Citation: | MA Yonghui, LIU Guishan, HE Jianguo, et al. Recent Advances on Multi-scale Heat and Mass Transfer of Fruits and Vegetables during the Cold Chain Process[J]. Science and Technology of Food Industry, 2022, 43(16): 9−17. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110311. |
[1] |
AJANI C, CURCIO S, DEJCHANCHAIWONG R, et al. Influence of shrinkage during natural rubber sheet drying: Numerical modeling of heat and mass transfer[J]. Applied Thermal Engineering,2018,149:798−806.
|
[2] |
EUSTON S R. Modelling and computer simulation of food structures[J]. Food Microstructures,2013:336−385.
|
[3] |
HO Q T, VERBOVEN P, MEBATSION H K, et al. Microscale mechanisms of gas exchange in fruit tissue[J]. New Phytologist,2009,182(1):163−174. doi: 10.1111/j.1469-8137.2008.02732.x
|
[4] |
ABERA M K, AREGAWI W A, HO Q T, et al. Multiscale modeling of food processes[J]. Module in Food Sciences, 2016.
|
[5] |
WU X H, CHANG Z J, ZHAO X L, et al. A multi-scale approach for refrigerated display cabinet coupled with supermarket HVAC system–Part I: Methodology and verification[J]. International Journal of Heat and Mass Transfer,2015,87:673−684. doi: 10.1016/j.ijheatmasstransfer.2015.04.004
|
[6] |
WU X H, CHANG Z J, ZHAO X L, et al. A multi-scale approach for refrigerated display cabinet coupled with supermarket HVAC system-Part II: The performance of VORDC and energy consumption analysis[J]. International Journal of Heat and Mass Transfer,2015,87:685−692. doi: 10.1016/j.ijheatmasstransfer.2015.04.003
|
[7] |
AJANI C K, ZHU Z W, SUN D W. Recent advances in multiscale CFD modelling of cooling processes and systems for the agrifood industry[J]. Critical Reviews in Food Science and Nutrition,2020(3):1−16.
|
[8] |
HO Q T, CARMELIET J, DATTA A K, et al. Multiscale modeling in food engineering[J]. Journal of Food Engineering,2013,114(3):279−291. doi: 10.1016/j.jfoodeng.2012.08.019
|
[9] |
KHAN M, KUMAR C, JOARDDER M, et al. Determination of appropriate effective diffusivity for different food materials[J]. Drying Technology,2016,35(3):335−346.
|
[10] |
OMAR M U H J, KARIM A. Development of a porosity prediction model based on shrinkage velocity and glass transition temperature[J]. Drying Technology,2019,37(15):1988−2004. doi: 10.1080/07373937.2018.1555540
|
[11] |
魏高亮. 纤维空气分布系统送风模式下果蔬冷藏库流场特性研究[D]. 西安: 西安建筑科技大学, 2020.
WEI G L. Airflow and heat transfer characteristics in a cold storage for fruits and vegetables based on fiber air dispersion system[D]. Xi'an: Xi'an University of Architecture and Technology, 2020.
|
[12] |
DURET S, HOANG H M, FLICK D, et al. Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products[J]. International Journal of Refrigeration,2014,46(2-3):17−25.
|
[13] |
LAGUERRE O, DURET S, HOANG H M, et al. Simplified heat transfer modeling in a cold room filled with food products[J]. Journal of Food Engineering,2015,149:78−86. doi: 10.1016/j.jfoodeng.2014.09.023
|
[14] |
HOANG H M, DURET S, FLICK D, et al. Preliminary study of airflow and heat transfer in a cold room filled with apple pallets: Comparison between two modelling approaches and experimental results[J]. Applied Thermal Engineering,2015,76:367−381. doi: 10.1016/j.applthermaleng.2014.11.012
|
[15] |
DEFRAEYE T, VERBOVEN P, NICOLAI B. CFD modelling of flow and scalar exchange of spherical food products: Turbulence and boundary-layer modelling[J]. Journal of Food Engineering,2013,114(4):495−504. doi: 10.1016/j.jfoodeng.2012.09.003
|
[16] |
TIAN Y, CHEN Z, ZHU Z, et al. Effects of tissue pre-degassing followed by ultrasound-assisted freezing on freezing efficiency and quality attributes of radishes[J]. Ultrasonics Sonochemistry,2020:105162.
|
[17] |
GETAHUN S, AMBAW A, DELELE M, et al. Analysis of airflow and heat transfer inside fruit packed refrigerated shipping container: Part I–Model development and validation[J]. Journal of Food Engineering,2017,203:58−68. doi: 10.1016/j.jfoodeng.2017.02.010
|
[18] |
DEFRAEYE T, VERBOVEN P, DEROMED, et al. Stomatal transpiration and droplet evaporation on leaf surfaces by a microscale modelling approach[J]. International Journal of Heat & Mass Transfer,2013,65:180−191.
|
[19] |
GL A, AGB C, LBA C, et al. Direct numerical simulation of spray droplet evaporation in hot turbulent channel flow[J]. International Journal of Heat and Mass Transfer,2020:160.
|
[20] |
DRIKAKIS D, FRANK M, TABOR G. Multiscale computational fluid dynamics[J]. Energies,2019,12(17):3272. doi: 10.3390/en12173272
|
[21] |
GEHRKE M, BANARI A, RUNG T. Performance of under-resolved, model-free LBM simulations in turbulent shear flows[M]. Progress in Hybrid RANS-LES Modelling, 2020, 143: 3-18.
|
[22] |
ARGYROPOULOS C D, MARKATOS N C. Recent advances on the numerical modelling of turbulent flows[J]. Applied Mathematical Modelling,2015,39(2):693−732. doi: 10.1016/j.apm.2014.07.001
|
[23] |
HAMI K. Turbulence modeling a review for different used methods[J]. International Journal of Heat and Technology,2021,39(1):227−234. doi: 10.18280/ijht.390125
|
[24] |
白通通. 果蔬冷藏库竖壁贴附送风模式流场特性的研究[D]. 西安: 西安建筑科技大学, 2018.
BAI T T. Airflow and heat transfer characteristics in a cold storage for fruits and vegetables based on vertical wall attached jet[D]. Xi'an: Xi'an University of Architecture and Technology, 2018.
|
[25] |
王达. 果蔬压差通风预冷研究及对其品质影响分析[D]. 济南: 山东建筑大学, 2016.
WANG D. Forced-air precooling research of fruit and vegetable and analysisof effects on its quality[D]. Jinan: Shandong Jianzhu University, 2016.
|
[26] |
SAJADIYE S M, AHMADI H, ZOLFAGHARI M, et al. A multi-scale three-dimensional CFD model of a full loaded cool storage[J]. International Journal of Food Engineering,2013,9(2):163−178. doi: 10.1515/ijfe-2012-0015
|
[27] |
DELELE M A, SCHENK A, TIJSKENS E, et al. Optimization of the humidification of cold stores by pressurized water atomizers based on a multiscale CFD model[J]. Journal of Food Engineering,2009,91(2):228−239. doi: 10.1016/j.jfoodeng.2008.08.027
|
[28] |
DELELE M A, SCHENK A, RAMON H, et al. Evaluation of a chicory root cold store humidification system using computational fluid dynamics[J]. Journal of Food Engineering,2009,94(1):110−121. doi: 10.1016/j.jfoodeng.2009.03.004
|
[29] |
SCHOEMAN L, WILLIAMS P, DU PLESSIS A, et al. X-ray micro-computed tomography (µCT) for non-destructive characterisation of food[J]. Trends in Food Science & Technology,2016,47:10−24.
|
[30] |
WANG Z, HERREMANS E, JANSSEN S, et al. Visualizing 3D food microstructure using tomographic methods: Advantages and disadvantages[J]. Annual Review of Food Science and Technology,2018,9:323−343. doi: 10.1146/annurev-food-030117-012639
|
[31] |
QUANG T H, VERBOVEN P, SOLOMON W F, et al. A multiphase pore scale network model of gas exchange in apple fruit[J]. Food & Bioprocess Technology,2014,7(2):482−495.
|
[32] |
HERREMANS E, VERBOVEN P, BONGAERS E, et al. Characterisation of 'Braeburn' browning disorder by means of X-ray micro-CT[J]. Postharvest Biology and Technology,2013,75:114−124. doi: 10.1016/j.postharvbio.2012.08.008
|
[33] |
HERREMANS E, VERBOVEN P, DEFRAEYE T, et al. X-ray CT for quantitative food microstructure engineering: The apple case[J]. Nuclear Inst & Methods in Physics Research B,2014,324:88−94.
|
[34] |
JANSSENS, VERBOVENP, NUGRAHAB, et al. 3D pore structure analysis of intact 'Braeburn' apples using X-ray micro-CT[J]. Postharvest Biology and Technology,2019:159.
|
[35] |
MUZIRI T, THERON K I, CANTRE D, et al. Microstructure analysis and detection of mealiness in 'Forelle' pear (Pyrus communis L.) by means of X-ray computed tomography[J]. Postharvest Biology & Technology,2016,120:145−156.
|
[36] |
CANTRE D, HERREMANS E, VERBOVEN P, et al. Characterization of the 3-D microstructure of mango (Mangiferaindica L. cv. Carabao) during ripening using X-ray computed microtomography[J]. Innovative Food Science & Emerging Technologies,2014,24(8):28−39.
|
[37] |
CANTRE D, EAST A, VERBOVEN P, et al. Microstructural characterisation of commercial kiwifruit cultivars using X-ray micro computed tomography[J]. Postharvest Biology and Technology,2014,92(3):79−86.
|
[38] |
HERREMANS E, MELADO-HERREROS A, DEFRAEYE T, et al. Comparison of X-ray CT and MRI of watercore disorder of different apple cultivars[J]. Postharvest Biology and Technology,2014,87:42−50. doi: 10.1016/j.postharvbio.2013.08.008
|
[39] |
KAMALT, ZHANGT, SONG Y K, et al. Water dynamics and physicochemical analysis of two different varieties of apple jam (Fuji) and (Yinduqing) by LF-NMR and MRI[J]. International Journal of Food Engineering, 2018, 14(3).
|
[40] |
DEFRAEYE T, LEHMANN V, GROSS D, et al. Application of MRI for tissue characterisation of 'Braeburn' apple[J]. Postharvest Biology and Technology,2013,75:95−105.
|
[41] |
孙炳新, 赵宏侠, 冯叙桥, 等. 基于低场核磁和成像技术的鲜枣贮藏过程水分状态的变化研究[J]. 中国食品学报,2016,16(5):252−257. [SUN B X, ZHAO H X, FENG X Q, et al. Studies on the change of moisture state of fresh jujube during storagebase on LF-NMR and MRI[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(5):252−257.
SUN B X, ZHAO H X, FENG X Q, et al. Studies on the change of moisture state of fresh jujube during storagebase on LF-NMR and MRI[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(5): 252-257.
|
[42] |
MUSSE M, DE GUIO F, QUELLEC S, et al. Quantification of microporosity in fruit by MRI at various magnetic fields: Comparison with X-ray microtomography[J]. Magnetic Resonance Imaging,2010,28(10):1525−1534. doi: 10.1016/j.mri.2010.06.028
|
[43] |
TURILLAZZI E, KARCH S B, NERI M, et al. Confocal laser scanning microscopy. Using new technology to answer old questions in forensic investigations[J]. International Journal of Legal Medicine,2008,122(2):173−177. doi: 10.1007/s00414-007-0208-0
|
[44] |
WUYTS N, PALAUQUI J C, CONEJERO G, et al. High-contrast three-dimensional imaging of the arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll[J]. Plant Methods,2010,6(1):17. doi: 10.1186/1746-4811-6-17
|
[45] |
STRAADT I K, THYBO A K, BERTRAM H C. NaCl-induced changes in structure and water mobility in potato tissue as determined by CLSM and LF-NMR[J]. LWT-Food Science and Technology,2008,41(8):1493−1500. doi: 10.1016/j.lwt.2007.09.007
|
[46] |
JHA P K, VIDOT K, XANTHAKIS E, et al. Benchmarking of techniques used to assess the freeze damage in potatoes[J]. Journal of Food Engineering,2019,262(DEC.):60−74.
|
[47] |
项海波, 刘东武, 张苗, 等. 基于叶绿素荧光强度分析蔬菜重金属污染[J]. 食品研究与开发,2013,34(22):3. [XIANG H B, LIU D W, ZHANG M, et al. Analysis of heavy metal pollution in vegetables based on the technique of laser scanning confocal microscope[J]. Food Research and Development,2013,34(22):3.
XIANG H B, LIU D W, ZHANG M, et al. Analysis of heavy metal pollution in vegetables based on the technique of laser scanning confocal microscope[J]. Food Research and Development, 2013, 34(22): 3.
|
[48] |
VERAVERBEKE E A, BRUAENE N V, OOSTVELDT P V, et al. Non destructive analysis of the wax layer of apple (Malus domestica Borkh.) by means of confocal laser scanning microscopy[J]. Planta,2001,213(4):525−533. doi: 10.1007/s004250100528
|
[49] |
AMBAW A, VERBOVEN P, DEFRAEYE T, et al. Porous medium modeling and parameter sensitivity analysis of 1-MCP distribution in boxes with apple fruit[J]. Journal of Food Engineering,2013,119(1):13−21. doi: 10.1016/j.jfoodeng.2013.05.007
|
[50] |
THIJS D, DOMINIQUE D, PIETER V, et al. Cross-scale modelling of transpiration from stomata via the leaf boundary layer[J]. Annals of Botany,2014,114(4):711−723. doi: 10.1093/aob/mct313
|
[51] |
MAJID S S, HOJAT A, MOSTAFA H S, et al. Evaluation of a cooling performance of a typical full loaded cool storage using mono-scale CFD simulation[J]. Modern Applied Science,2012,6(1):102−119.
|
[52] |
VERBOVEN P, FLICK D, NICOLA B M, et al. Modelling transport phenomena in refrigerated food bulks, packages and stacks: Basics and advances[J]. International Journal of Refrigeration,2006,29(6):985−997. doi: 10.1016/j.ijrefrig.2005.12.010
|
[53] |
DELELE M A, KUFFI K D, NICOLAI B, et al. CFD modeling to improve the performance of industrial cooling of large beef carcasses[M]. In book: Computational Fluid Dynamics in Food Processing, 2018.
|
[54] |
HAN J W, BADÍA-MELISR, YANG X T, et al. CFD simulation of airflow and heat transfer during forced-air precooling of apples[J]. Journal of Food Process Engineering,2017,40(2):1−11.
|
[55] |
AMBAW A, DEKEYSER D, VANWALLEGHEM T, et al. Experimental and numerical analysis of the spray application on apple fruit in a bin for postharvest treatments[J]. Journal of Food Engineering,2017,202:34−45. doi: 10.1016/j.jfoodeng.2017.01.026
|
[56] |
WU W, DEFRAEYE T. Identifying heterogeneities in cooling and quality evolution for a pallet of packed fresh fruit by using virtual cold chains[J]. Applied Thermal Engineering,2018,133:407−417. doi: 10.1016/j.applthermaleng.2017.11.049
|
[57] |
GAEDTKE M, WACHTER S, RAEDLE M, et al. Application of a lattice boltzmann method combined with a smagorinsky turbulence model to spatially resolved heat flux inside a refrigerated vehicle[J]. Computers & Mathematics with Applications,2018,76(10):2315−2329.
|
[58] |
HIRSCH C. Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics[M]. Elsevier Ltd, 2007.
|
[59] |
VAN DER SMAN R G M. Lattice boltzmann simulation of microstructures[J]. Food Sci Technol,2006,166:15−40.
|
[60] |
CARDINALE T, FAZIO P, GRANDIZIO F, et al. Numerical and experimental computation of airflow in a transport container[J]. International Journal of Heat & Technology,2016,34(4):734−742.
|
[61] |
ZHAO Y, MINGFENG C, AIQIANG C, et al. Analysis about heat transfer of vegetables during cold shock treatment and preservation quality after storage[J]. International Journal of Food Engineering, 2017, 13(3).
|
[62] |
宫亚芳, 曹玉会. 衬垫与箱壁间空隙对苹果预冷效果的影响[J]. 中国科学院大学学报,2021,38(2):198−206. [GONG Y F, CAO Y H. Effect of the gap width between tray and box wall on the precooling effectiveness of apples[J]. Journal of University of Chinese Academy of Sciences,2021,38(2):198−206. doi: 10.7523/j.issn.2095-6134.2021.02.006
GONG Y F, CAO Y H. Effect of the gap width between tray and box wall on the precooling effectiveness of apples[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(2): 198-206. doi: 10.7523/j.issn.2095-6134.2021.02.006
|
[63] |
GRUYTERS W, VERBOVEN P, DIELS E, et al. Modelling cooling of packaged fruit using 3D shape models[J]. Food and Bioprocess Technology,2018,11(3):2008−2020.
|
[64] |
BERRY T M, DEFRAEYE T, NICOLA B M, et al. Multiparameter analysis of cooling efficiency of ventilated fruit cartons using CFD: Impact of vent hole design and internal packaging[J]. Food and Bioprocess Technology,2016,9(9):1481−1493. doi: 10.1007/s11947-016-1733-y
|
[65] |
季阿敏. 果蔬气调贮藏冷却阶段温度变化的数值模拟及验证[J]. 农业工程学报,2006,22(5):25−28. [JI A M. Numerical simulation and experimental verification of temperature variation during controlled atomosphere cold storage of fruits and vegetables[J]. Transactions of the CSAE,2006,22(5):25−28.
JI A M. Numerical simulation and experimental verification of temperature variation during controlled atomosphere cold storage of fruits and vegetables[J]. T ransactions of the CSAE, 2006, 22(5): 25-28.
|
[66] |
尹海蛟, 杨昭, 陈爱强. 果蔬热处理传热过程的数值模拟及验证[J]. 农业工程学报,2010,26(11):344−348. [YIN H J, YANG Z, CHEN A Q. Numerical simulation and experimental verification of heat transfer for fruits and vegetables during heat treatment[J]. Transactions of the CSAE,2010,26(11):344−348. doi: 10.3969/j.issn.1002-6819.2010.11.058
YIN H J, YANG Z, CHEN A Q. Numerical simulation and experimental verification of heat transfer for fruits and vegetables during heat treatment[J]. Transactions of the CSAE, 2010, 26(11): 344-348. doi: 10.3969/j.issn.1002-6819.2010.11.058
|
[67] |
AGUILAR-MADERA C G, ESPINOSA-PAREDES G. Neutron diffusion analysis of a fuel pebble with volume averaging method[J]. Journal of Porous Media,2020,23(4):363−381. doi: 10.1615/JPorMedia.2020027522
|
[68] |
SANDHU J S, TAKHAR P S. Verification of hybrid mixture theory based two-scale unsaturated transport processes using controlled frying experiments[J]. Food and Bioproducts Processing,2018,110:26−39. doi: 10.1016/j.fbp.2018.04.004
|
[69] |
WEIGAND T M, SCHULTZ P B, GIFFEN D H, et al. Modeling non-dilute species transport using the thermodynamically constrained averaging theory[J]. Water Resources Research,2018,54(9):6656−6682. doi: 10.1029/2017WR022471
|
[70] |
WELSH Z G, KHAN M, KARIM M A. Multiscale modeling for food drying: A homogenized diffusion approach[J]. Journal of Food Engineering,2020:292.
|
[71] |
JACOB B. Theory and applications of transport in porous media modelling phenomena of flow and transport in porous media[M]. Cham, Switzerland: Springer international publishing AG, 2018.
|
[72] |
BATTIATO I, FERREROV P T, Malley D O, et al. Theory and applications of macroscale models in porous media[J]. Transport in Porous Media,2019,130(1):5−76. doi: 10.1007/s11242-019-01282-2
|
[73] |
ICHISHIMA D, MATSUMURA Y. Renormalization group theory of molecular dynamics[J]. Scientific Reports,2021,11(1):5968−5968. doi: 10.1038/s41598-021-85286-3
|
[74] |
张照明, 王苗, 闫孝红. 颗粒填充柱内溶质弥散系数的体积平均方法[J]. 化学工程,2015,43(3):5. [ZHANG Z M, WANG M, YAN X H. Solute dispersion in particle packed columns by volume averaging method[J]. Chemical Engineering,2015,43(3):5. doi: 10.3969/j.issn.1005-9954.2015.03.002
ZHANG Z M, WANG M, YAN X H. Solute dispersion in particle packed columns by volume averaging method[J]. Chemical Engineering, 2015, 43(3): 5. doi: 10.3969/j.issn.1005-9954.2015.03.002
|
[75] |
许照刚. 基于体积平均技术的饱和土体多过程耦合现象理论研究[D]. 北京: 北京工业大学, 2017.
XU Z G. The oretical study on multi-process coupling phenomena of saturated soil based on volume averaging technique[D]. Beijing: Beijing University of Technology, 2017.
|
[76] |
TAKHAR P S. Unsaturated fluid transport in swelling poroviscoelastic biopolymers[J]. Chemical Engineering Science,2014,109:98−110. doi: 10.1016/j.ces.2014.01.016
|
[77] |
TAKHAR P S. Hybrid mixture theory based moisture transport and stress development in corn kernels during drying: Coupled fluid transport and stress equations[J]. Journal of Food Engineering,2015,105(4):663−670.
|
[78] |
TAKHAR P S, MAIER D E, CAMPANELLA O H, et al. Hybrid mixture theory based moisture transport and stress developmentin corn kernels during drying: Validation and simulation results[J]. Journal of Food Engineering,2011,106(4):275−282. doi: 10.1016/j.jfoodeng.2011.05.006
|
[79] |
RYBAK I V, GRAY W G, MILLER C T. Modeling two-fluid-phase flow and species transport in porous media[J]. Journal of Hydrology,2015,521:565−581. doi: 10.1016/j.jhydrol.2014.11.051
|
[80] |
ARUNACHALAM H, KORNEEV S, BATTIATO I, et al. Multiscale modeling approach to determine effective lithium-ion transport properties[C]//American Control Conference, IEEE, 2017.
|
[81] |
EITELBERGER J, HOFSTETTER K. Prediction of transport properties of wood below the fiber saturation point-a multiscale homogenization approach and its experimental validation. Part II: Steady state moisture diffusion coefficient[J]. Composites Science & Technology,2011,71(2):145−151.
|
[82] |
PIERRE G, YVES G. Flow in fractured media: A modified renormalization method[J]. Water Resources Research,1998,34(2):177−191. doi: 10.1029/97WR03042
|
1. |
高聪慧,王晨,王晔兰,高秀华,刘晓虎,刘惠敏,王天轶,苏彦雷. 芫花素对丝裂原活化蛋白激酶p38α的抑制作用研究. 医学动物防制. 2025(06): 545-549 .
![]() | |
2. |
米宏英,张萍,高慧媛,姚令文,魏锋,马双成,陆兔林. 炮制工艺对芫花化学成分、药理毒理及药材质量影响的研究进展. 中国药学杂志. 2023(10): 865-874 .
![]() | |
3. |
肖明红,杨双鹤,董霞,董坤. 茶花蜂花粉破壁工艺及其水提物降血糖功效的研究. 粮食与油脂. 2023(06): 124-129 .
![]() | |
4. |
于娟,江小丽,黄媛,任玲,高斯婷,董蕊,周红杰,李亚莉. 外源添加菌发酵普洱茶的差异代谢物动态研究. 食品工业科技. 2023(23): 262-269 .
![]() | |
5. |
周香菊,陈雨琴,尹忠平,梁琦,臧建威,唐道邦,陈继光. 柚皮素对α-葡萄糖苷酶的抑制作用及其机制. 食品工业科技. 2022(08): 157-164 .
![]() |