MA Yonghui, LIU Guishan, HE Jianguo, et al. Recent Advances on Multi-scale Heat and Mass Transfer of Fruits and Vegetables during the Cold Chain Process[J]. Science and Technology of Food Industry, 2022, 43(16): 9−17. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110311.
Citation: MA Yonghui, LIU Guishan, HE Jianguo, et al. Recent Advances on Multi-scale Heat and Mass Transfer of Fruits and Vegetables during the Cold Chain Process[J]. Science and Technology of Food Industry, 2022, 43(16): 9−17. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110311.

Recent Advances on Multi-scale Heat and Mass Transfer of Fruits and Vegetables during the Cold Chain Process

More Information
  • Received Date: November 25, 2021
  • Available Online: June 12, 2022
  • The process of cold chain of fruits and vegetables can easily cause damage to the internal structure of fruits and vegetables and arouse quality deterioration due to problems such as extensive control and large losses. Meanwhile, the moisture and heat inside the fruits and vegetables would dynamically migrate, which is not a beneficial effect of the storage and sales on fruits and vegetables. Therefore, it is an urgent problem for studying multi-scale heat and mass transfer mechanism in the cold chain process of fruits and vegetables. This paper clarifies the numerical imaging technology for multi-scale modeling of fruits and vegetables, discusses the multi-scale computational fluid dynamics modeling method of heat and mass transfer mechanism in the cold chain process of fruits and vegetables, as well as the basic problems and solutions in modeling, and optimizes the heat and mass transfer models and designs more efficient and reasonable cooling systems, in order to provide a theoretical basis for the study of the multi-scale heat and mass transfer mechanism, loss reduction and preservation during the cold chain process of fruits and vegetables.
  • [1]
    AJANI C, CURCIO S, DEJCHANCHAIWONG R, et al. Influence of shrinkage during natural rubber sheet drying: Numerical modeling of heat and mass transfer[J]. Applied Thermal Engineering,2018,149:798−806.
    [2]
    EUSTON S R. Modelling and computer simulation of food structures[J]. Food Microstructures,2013:336−385.
    [3]
    HO Q T, VERBOVEN P, MEBATSION H K, et al. Microscale mechanisms of gas exchange in fruit tissue[J]. New Phytologist,2009,182(1):163−174. doi: 10.1111/j.1469-8137.2008.02732.x
    [4]
    ABERA M K, AREGAWI W A, HO Q T, et al. Multiscale modeling of food processes[J]. Module in Food Sciences, 2016.
    [5]
    WU X H, CHANG Z J, ZHAO X L, et al. A multi-scale approach for refrigerated display cabinet coupled with supermarket HVAC system–Part I: Methodology and verification[J]. International Journal of Heat and Mass Transfer,2015,87:673−684. doi: 10.1016/j.ijheatmasstransfer.2015.04.004
    [6]
    WU X H, CHANG Z J, ZHAO X L, et al. A multi-scale approach for refrigerated display cabinet coupled with supermarket HVAC system-Part II: The performance of VORDC and energy consumption analysis[J]. International Journal of Heat and Mass Transfer,2015,87:685−692. doi: 10.1016/j.ijheatmasstransfer.2015.04.003
    [7]
    AJANI C K, ZHU Z W, SUN D W. Recent advances in multiscale CFD modelling of cooling processes and systems for the agrifood industry[J]. Critical Reviews in Food Science and Nutrition,2020(3):1−16.
    [8]
    HO Q T, CARMELIET J, DATTA A K, et al. Multiscale modeling in food engineering[J]. Journal of Food Engineering,2013,114(3):279−291. doi: 10.1016/j.jfoodeng.2012.08.019
    [9]
    KHAN M, KUMAR C, JOARDDER M, et al. Determination of appropriate effective diffusivity for different food materials[J]. Drying Technology,2016,35(3):335−346.
    [10]
    OMAR M U H J, KARIM A. Development of a porosity prediction model based on shrinkage velocity and glass transition temperature[J]. Drying Technology,2019,37(15):1988−2004. doi: 10.1080/07373937.2018.1555540
    [11]
    魏高亮. 纤维空气分布系统送风模式下果蔬冷藏库流场特性研究[D]. 西安: 西安建筑科技大学, 2020.

    WEI G L. Airflow and heat transfer characteristics in a cold storage for fruits and vegetables based on fiber air dispersion system[D]. Xi'an: Xi'an University of Architecture and Technology, 2020.
    [12]
    DURET S, HOANG H M, FLICK D, et al. Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products[J]. International Journal of Refrigeration,2014,46(2-3):17−25.
    [13]
    LAGUERRE O, DURET S, HOANG H M, et al. Simplified heat transfer modeling in a cold room filled with food products[J]. Journal of Food Engineering,2015,149:78−86. doi: 10.1016/j.jfoodeng.2014.09.023
    [14]
    HOANG H M, DURET S, FLICK D, et al. Preliminary study of airflow and heat transfer in a cold room filled with apple pallets: Comparison between two modelling approaches and experimental results[J]. Applied Thermal Engineering,2015,76:367−381. doi: 10.1016/j.applthermaleng.2014.11.012
    [15]
    DEFRAEYE T, VERBOVEN P, NICOLAI B. CFD modelling of flow and scalar exchange of spherical food products: Turbulence and boundary-layer modelling[J]. Journal of Food Engineering,2013,114(4):495−504. doi: 10.1016/j.jfoodeng.2012.09.003
    [16]
    TIAN Y, CHEN Z, ZHU Z, et al. Effects of tissue pre-degassing followed by ultrasound-assisted freezing on freezing efficiency and quality attributes of radishes[J]. Ultrasonics Sonochemistry,2020:105162.
    [17]
    GETAHUN S, AMBAW A, DELELE M, et al. Analysis of airflow and heat transfer inside fruit packed refrigerated shipping container: Part I–Model development and validation[J]. Journal of Food Engineering,2017,203:58−68. doi: 10.1016/j.jfoodeng.2017.02.010
    [18]
    DEFRAEYE T, VERBOVEN P, DEROMED, et al. Stomatal transpiration and droplet evaporation on leaf surfaces by a microscale modelling approach[J]. International Journal of Heat & Mass Transfer,2013,65:180−191.
    [19]
    GL A, AGB C, LBA C, et al. Direct numerical simulation of spray droplet evaporation in hot turbulent channel flow[J]. International Journal of Heat and Mass Transfer,2020:160.
    [20]
    DRIKAKIS D, FRANK M, TABOR G. Multiscale computational fluid dynamics[J]. Energies,2019,12(17):3272. doi: 10.3390/en12173272
    [21]
    GEHRKE M, BANARI A, RUNG T. Performance of under-resolved, model-free LBM simulations in turbulent shear flows[M]. Progress in Hybrid RANS-LES Modelling, 2020, 143: 3-18.
    [22]
    ARGYROPOULOS C D, MARKATOS N C. Recent advances on the numerical modelling of turbulent flows[J]. Applied Mathematical Modelling,2015,39(2):693−732. doi: 10.1016/j.apm.2014.07.001
    [23]
    HAMI K. Turbulence modeling a review for different used methods[J]. International Journal of Heat and Technology,2021,39(1):227−234. doi: 10.18280/ijht.390125
    [24]
    白通通. 果蔬冷藏库竖壁贴附送风模式流场特性的研究[D]. 西安: 西安建筑科技大学, 2018.

    BAI T T. Airflow and heat transfer characteristics in a cold storage for fruits and vegetables based on vertical wall attached jet[D]. Xi'an: Xi'an University of Architecture and Technology, 2018.
    [25]
    王达. 果蔬压差通风预冷研究及对其品质影响分析[D]. 济南: 山东建筑大学, 2016.

    WANG D. Forced-air precooling research of fruit and vegetable and analysisof effects on its quality[D]. Jinan: Shandong Jianzhu University, 2016.
    [26]
    SAJADIYE S M, AHMADI H, ZOLFAGHARI M, et al. A multi-scale three-dimensional CFD model of a full loaded cool storage[J]. International Journal of Food Engineering,2013,9(2):163−178. doi: 10.1515/ijfe-2012-0015
    [27]
    DELELE M A, SCHENK A, TIJSKENS E, et al. Optimization of the humidification of cold stores by pressurized water atomizers based on a multiscale CFD model[J]. Journal of Food Engineering,2009,91(2):228−239. doi: 10.1016/j.jfoodeng.2008.08.027
    [28]
    DELELE M A, SCHENK A, RAMON H, et al. Evaluation of a chicory root cold store humidification system using computational fluid dynamics[J]. Journal of Food Engineering,2009,94(1):110−121. doi: 10.1016/j.jfoodeng.2009.03.004
    [29]
    SCHOEMAN L, WILLIAMS P, DU PLESSIS A, et al. X-ray micro-computed tomography (µCT) for non-destructive characterisation of food[J]. Trends in Food Science & Technology,2016,47:10−24.
    [30]
    WANG Z, HERREMANS E, JANSSEN S, et al. Visualizing 3D food microstructure using tomographic methods: Advantages and disadvantages[J]. Annual Review of Food Science and Technology,2018,9:323−343. doi: 10.1146/annurev-food-030117-012639
    [31]
    QUANG T H, VERBOVEN P, SOLOMON W F, et al. A multiphase pore scale network model of gas exchange in apple fruit[J]. Food & Bioprocess Technology,2014,7(2):482−495.
    [32]
    HERREMANS E, VERBOVEN P, BONGAERS E, et al. Characterisation of 'Braeburn' browning disorder by means of X-ray micro-CT[J]. Postharvest Biology and Technology,2013,75:114−124. doi: 10.1016/j.postharvbio.2012.08.008
    [33]
    HERREMANS E, VERBOVEN P, DEFRAEYE T, et al. X-ray CT for quantitative food microstructure engineering: The apple case[J]. Nuclear Inst & Methods in Physics Research B,2014,324:88−94.
    [34]
    JANSSENS, VERBOVENP, NUGRAHAB, et al. 3D pore structure analysis of intact 'Braeburn' apples using X-ray micro-CT[J]. Postharvest Biology and Technology,2019:159.
    [35]
    MUZIRI T, THERON K I, CANTRE D, et al. Microstructure analysis and detection of mealiness in 'Forelle' pear (Pyrus communis L.) by means of X-ray computed tomography[J]. Postharvest Biology & Technology,2016,120:145−156.
    [36]
    CANTRE D, HERREMANS E, VERBOVEN P, et al. Characterization of the 3-D microstructure of mango (Mangiferaindica L. cv. Carabao) during ripening using X-ray computed microtomography[J]. Innovative Food Science & Emerging Technologies,2014,24(8):28−39.
    [37]
    CANTRE D, EAST A, VERBOVEN P, et al. Microstructural characterisation of commercial kiwifruit cultivars using X-ray micro computed tomography[J]. Postharvest Biology and Technology,2014,92(3):79−86.
    [38]
    HERREMANS E, MELADO-HERREROS A, DEFRAEYE T, et al. Comparison of X-ray CT and MRI of watercore disorder of different apple cultivars[J]. Postharvest Biology and Technology,2014,87:42−50. doi: 10.1016/j.postharvbio.2013.08.008
    [39]
    KAMALT, ZHANGT, SONG Y K, et al. Water dynamics and physicochemical analysis of two different varieties of apple jam (Fuji) and (Yinduqing) by LF-NMR and MRI[J]. International Journal of Food Engineering, 2018, 14(3).
    [40]
    DEFRAEYE T, LEHMANN V, GROSS D, et al. Application of MRI for tissue characterisation of 'Braeburn' apple[J]. Postharvest Biology and Technology,2013,75:95−105.
    [41]
    孙炳新, 赵宏侠, 冯叙桥, 等. 基于低场核磁和成像技术的鲜枣贮藏过程水分状态的变化研究[J]. 中国食品学报,2016,16(5):252−257. [SUN B X, ZHAO H X, FENG X Q, et al. Studies on the change of moisture state of fresh jujube during storagebase on LF-NMR and MRI[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(5):252−257.

    SUN B X, ZHAO H X, FENG X Q, et al. Studies on the change of moisture state of fresh jujube during storagebase on LF-NMR and MRI[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(5): 252-257.
    [42]
    MUSSE M, DE GUIO F, QUELLEC S, et al. Quantification of microporosity in fruit by MRI at various magnetic fields: Comparison with X-ray microtomography[J]. Magnetic Resonance Imaging,2010,28(10):1525−1534. doi: 10.1016/j.mri.2010.06.028
    [43]
    TURILLAZZI E, KARCH S B, NERI M, et al. Confocal laser scanning microscopy. Using new technology to answer old questions in forensic investigations[J]. International Journal of Legal Medicine,2008,122(2):173−177. doi: 10.1007/s00414-007-0208-0
    [44]
    WUYTS N, PALAUQUI J C, CONEJERO G, et al. High-contrast three-dimensional imaging of the arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll[J]. Plant Methods,2010,6(1):17. doi: 10.1186/1746-4811-6-17
    [45]
    STRAADT I K, THYBO A K, BERTRAM H C. NaCl-induced changes in structure and water mobility in potato tissue as determined by CLSM and LF-NMR[J]. LWT-Food Science and Technology,2008,41(8):1493−1500. doi: 10.1016/j.lwt.2007.09.007
    [46]
    JHA P K, VIDOT K, XANTHAKIS E, et al. Benchmarking of techniques used to assess the freeze damage in potatoes[J]. Journal of Food Engineering,2019,262(DEC.):60−74.
    [47]
    项海波, 刘东武, 张苗, 等. 基于叶绿素荧光强度分析蔬菜重金属污染[J]. 食品研究与开发,2013,34(22):3. [XIANG H B, LIU D W, ZHANG M, et al. Analysis of heavy metal pollution in vegetables based on the technique of laser scanning confocal microscope[J]. Food Research and Development,2013,34(22):3.

    XIANG H B, LIU D W, ZHANG M, et al. Analysis of heavy metal pollution in vegetables based on the technique of laser scanning confocal microscope[J]. Food Research and Development, 2013, 34(22): 3.
    [48]
    VERAVERBEKE E A, BRUAENE N V, OOSTVELDT P V, et al. Non destructive analysis of the wax layer of apple (Malus domestica Borkh.) by means of confocal laser scanning microscopy[J]. Planta,2001,213(4):525−533. doi: 10.1007/s004250100528
    [49]
    AMBAW A, VERBOVEN P, DEFRAEYE T, et al. Porous medium modeling and parameter sensitivity analysis of 1-MCP distribution in boxes with apple fruit[J]. Journal of Food Engineering,2013,119(1):13−21. doi: 10.1016/j.jfoodeng.2013.05.007
    [50]
    THIJS D, DOMINIQUE D, PIETER V, et al. Cross-scale modelling of transpiration from stomata via the leaf boundary layer[J]. Annals of Botany,2014,114(4):711−723. doi: 10.1093/aob/mct313
    [51]
    MAJID S S, HOJAT A, MOSTAFA H S, et al. Evaluation of a cooling performance of a typical full loaded cool storage using mono-scale CFD simulation[J]. Modern Applied Science,2012,6(1):102−119.
    [52]
    VERBOVEN P, FLICK D, NICOLA B M, et al. Modelling transport phenomena in refrigerated food bulks, packages and stacks: Basics and advances[J]. International Journal of Refrigeration,2006,29(6):985−997. doi: 10.1016/j.ijrefrig.2005.12.010
    [53]
    DELELE M A, KUFFI K D, NICOLAI B, et al. CFD modeling to improve the performance of industrial cooling of large beef carcasses[M]. In book: Computational Fluid Dynamics in Food Processing, 2018.
    [54]
    HAN J W, BADÍA-MELISR, YANG X T, et al. CFD simulation of airflow and heat transfer during forced-air precooling of apples[J]. Journal of Food Process Engineering,2017,40(2):1−11.
    [55]
    AMBAW A, DEKEYSER D, VANWALLEGHEM T, et al. Experimental and numerical analysis of the spray application on apple fruit in a bin for postharvest treatments[J]. Journal of Food Engineering,2017,202:34−45. doi: 10.1016/j.jfoodeng.2017.01.026
    [56]
    WU W, DEFRAEYE T. Identifying heterogeneities in cooling and quality evolution for a pallet of packed fresh fruit by using virtual cold chains[J]. Applied Thermal Engineering,2018,133:407−417. doi: 10.1016/j.applthermaleng.2017.11.049
    [57]
    GAEDTKE M, WACHTER S, RAEDLE M, et al. Application of a lattice boltzmann method combined with a smagorinsky turbulence model to spatially resolved heat flux inside a refrigerated vehicle[J]. Computers & Mathematics with Applications,2018,76(10):2315−2329.
    [58]
    HIRSCH C. Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics[M]. Elsevier Ltd, 2007.
    [59]
    VAN DER SMAN R G M. Lattice boltzmann simulation of microstructures[J]. Food Sci Technol,2006,166:15−40.
    [60]
    CARDINALE T, FAZIO P, GRANDIZIO F, et al. Numerical and experimental computation of airflow in a transport container[J]. International Journal of Heat & Technology,2016,34(4):734−742.
    [61]
    ZHAO Y, MINGFENG C, AIQIANG C, et al. Analysis about heat transfer of vegetables during cold shock treatment and preservation quality after storage[J]. International Journal of Food Engineering, 2017, 13(3).
    [62]
    宫亚芳, 曹玉会. 衬垫与箱壁间空隙对苹果预冷效果的影响[J]. 中国科学院大学学报,2021,38(2):198−206. [GONG Y F, CAO Y H. Effect of the gap width between tray and box wall on the precooling effectiveness of apples[J]. Journal of University of Chinese Academy of Sciences,2021,38(2):198−206. doi: 10.7523/j.issn.2095-6134.2021.02.006

    GONG Y F, CAO Y H. Effect of the gap width between tray and box wall on the precooling effectiveness of apples[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(2): 198-206. doi: 10.7523/j.issn.2095-6134.2021.02.006
    [63]
    GRUYTERS W, VERBOVEN P, DIELS E, et al. Modelling cooling of packaged fruit using 3D shape models[J]. Food and Bioprocess Technology,2018,11(3):2008−2020.
    [64]
    BERRY T M, DEFRAEYE T, NICOLA B M, et al. Multiparameter analysis of cooling efficiency of ventilated fruit cartons using CFD: Impact of vent hole design and internal packaging[J]. Food and Bioprocess Technology,2016,9(9):1481−1493. doi: 10.1007/s11947-016-1733-y
    [65]
    季阿敏. 果蔬气调贮藏冷却阶段温度变化的数值模拟及验证[J]. 农业工程学报,2006,22(5):25−28. [JI A M. Numerical simulation and experimental verification of temperature variation during controlled atomosphere cold storage of fruits and vegetables[J]. Transactions of the CSAE,2006,22(5):25−28.

    JI A M. Numerical simulation and experimental verification of temperature variation during controlled atomosphere cold storage of fruits and vegetables[J]. T ransactions of the CSAE, 2006, 22(5): 25-28.
    [66]
    尹海蛟, 杨昭, 陈爱强. 果蔬热处理传热过程的数值模拟及验证[J]. 农业工程学报,2010,26(11):344−348. [YIN H J, YANG Z, CHEN A Q. Numerical simulation and experimental verification of heat transfer for fruits and vegetables during heat treatment[J]. Transactions of the CSAE,2010,26(11):344−348. doi: 10.3969/j.issn.1002-6819.2010.11.058

    YIN H J, YANG Z, CHEN A Q. Numerical simulation and experimental verification of heat transfer for fruits and vegetables during heat treatment[J]. Transactions of the CSAE, 2010, 26(11): 344-348. doi: 10.3969/j.issn.1002-6819.2010.11.058
    [67]
    AGUILAR-MADERA C G, ESPINOSA-PAREDES G. Neutron diffusion analysis of a fuel pebble with volume averaging method[J]. Journal of Porous Media,2020,23(4):363−381. doi: 10.1615/JPorMedia.2020027522
    [68]
    SANDHU J S, TAKHAR P S. Verification of hybrid mixture theory based two-scale unsaturated transport processes using controlled frying experiments[J]. Food and Bioproducts Processing,2018,110:26−39. doi: 10.1016/j.fbp.2018.04.004
    [69]
    WEIGAND T M, SCHULTZ P B, GIFFEN D H, et al. Modeling non-dilute species transport using the thermodynamically constrained averaging theory[J]. Water Resources Research,2018,54(9):6656−6682. doi: 10.1029/2017WR022471
    [70]
    WELSH Z G, KHAN M, KARIM M A. Multiscale modeling for food drying: A homogenized diffusion approach[J]. Journal of Food Engineering,2020:292.
    [71]
    JACOB B. Theory and applications of transport in porous media modelling phenomena of flow and transport in porous media[M]. Cham, Switzerland: Springer international publishing AG, 2018.
    [72]
    BATTIATO I, FERREROV P T, Malley D O, et al. Theory and applications of macroscale models in porous media[J]. Transport in Porous Media,2019,130(1):5−76. doi: 10.1007/s11242-019-01282-2
    [73]
    ICHISHIMA D, MATSUMURA Y. Renormalization group theory of molecular dynamics[J]. Scientific Reports,2021,11(1):5968−5968. doi: 10.1038/s41598-021-85286-3
    [74]
    张照明, 王苗, 闫孝红. 颗粒填充柱内溶质弥散系数的体积平均方法[J]. 化学工程,2015,43(3):5. [ZHANG Z M, WANG M, YAN X H. Solute dispersion in particle packed columns by volume averaging method[J]. Chemical Engineering,2015,43(3):5. doi: 10.3969/j.issn.1005-9954.2015.03.002

    ZHANG Z M, WANG M, YAN X H. Solute dispersion in particle packed columns by volume averaging method[J]. Chemical Engineering, 2015, 43(3): 5. doi: 10.3969/j.issn.1005-9954.2015.03.002
    [75]
    许照刚. 基于体积平均技术的饱和土体多过程耦合现象理论研究[D]. 北京: 北京工业大学, 2017.

    XU Z G. The oretical study on multi-process coupling phenomena of saturated soil based on volume averaging technique[D]. Beijing: Beijing University of Technology, 2017.
    [76]
    TAKHAR P S. Unsaturated fluid transport in swelling poroviscoelastic biopolymers[J]. Chemical Engineering Science,2014,109:98−110. doi: 10.1016/j.ces.2014.01.016
    [77]
    TAKHAR P S. Hybrid mixture theory based moisture transport and stress development in corn kernels during drying: Coupled fluid transport and stress equations[J]. Journal of Food Engineering,2015,105(4):663−670.
    [78]
    TAKHAR P S, MAIER D E, CAMPANELLA O H, et al. Hybrid mixture theory based moisture transport and stress developmentin corn kernels during drying: Validation and simulation results[J]. Journal of Food Engineering,2011,106(4):275−282. doi: 10.1016/j.jfoodeng.2011.05.006
    [79]
    RYBAK I V, GRAY W G, MILLER C T. Modeling two-fluid-phase flow and species transport in porous media[J]. Journal of Hydrology,2015,521:565−581. doi: 10.1016/j.jhydrol.2014.11.051
    [80]
    ARUNACHALAM H, KORNEEV S, BATTIATO I, et al. Multiscale modeling approach to determine effective lithium-ion transport properties[C]//American Control Conference, IEEE, 2017.
    [81]
    EITELBERGER J, HOFSTETTER K. Prediction of transport properties of wood below the fiber saturation point-a multiscale homogenization approach and its experimental validation. Part II: Steady state moisture diffusion coefficient[J]. Composites Science & Technology,2011,71(2):145−151.
    [82]
    PIERRE G, YVES G. Flow in fractured media: A modified renormalization method[J]. Water Resources Research,1998,34(2):177−191. doi: 10.1029/97WR03042
  • Cited by

    Periodical cited type(5)

    1. 高聪慧,王晨,王晔兰,高秀华,刘晓虎,刘惠敏,王天轶,苏彦雷. 芫花素对丝裂原活化蛋白激酶p38α的抑制作用研究. 医学动物防制. 2025(06): 545-549 .
    2. 米宏英,张萍,高慧媛,姚令文,魏锋,马双成,陆兔林. 炮制工艺对芫花化学成分、药理毒理及药材质量影响的研究进展. 中国药学杂志. 2023(10): 865-874 .
    3. 肖明红,杨双鹤,董霞,董坤. 茶花蜂花粉破壁工艺及其水提物降血糖功效的研究. 粮食与油脂. 2023(06): 124-129 .
    4. 于娟,江小丽,黄媛,任玲,高斯婷,董蕊,周红杰,李亚莉. 外源添加菌发酵普洱茶的差异代谢物动态研究. 食品工业科技. 2023(23): 262-269 . 本站查看
    5. 周香菊,陈雨琴,尹忠平,梁琦,臧建威,唐道邦,陈继光. 柚皮素对α-葡萄糖苷酶的抑制作用及其机制. 食品工业科技. 2022(08): 157-164 . 本站查看

    Other cited types(6)

Catalog

    Article Metrics

    Article views (212) PDF downloads (24) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return