SUN Wenke, SHEN Zhaopeng, QUAN Haoyan, et al. Rapid Detection of Total Bacterial Count of Porphyra yezoensis Based on Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(16): 322−328. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110257.
Citation: SUN Wenke, SHEN Zhaopeng, QUAN Haoyan, et al. Rapid Detection of Total Bacterial Count of Porphyra yezoensis Based on Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(16): 322−328. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110257.

Rapid Detection of Total Bacterial Count of Porphyra yezoensis Based on Near Infrared Spectroscopy

More Information
  • Received Date: November 20, 2021
  • Available Online: June 12, 2022
  • To discuss the possibility of the non-destructive prediction of the total colonies of Porphyra yezoensis, this research explored a non-destructive method that using near infrared spectral imaging to predict the total colonies of Porphyra yezoensis. Porphyra yezoensis samples were measured the total colonies first, and then collected the original spectral information and total colonies of samples. Standard normal variable transformation (SNV), multiple scattering correction (MSC) and second order derivative were used to preprocess spectral data. After selecting the best pretreatment method in this study, the prediction models of total number of bacteria were established based on spectral information including mixed logistic regression (MLR), support vector regression (SVR), artificial neuro network (ANN) and convolutional neural networks (CNN). The results of the investigation showed that the second derivative method combined with standard normal variable transformation was the relative best pretreatment method. And the relative best prediction model was the CNN model which was based on the full-wave band, which the r value was 0.940. According to these results, the convolutional neural networks (CNN) could be used to predict the total number of colonies of Porphyra yezoensis.
  • [1]
    BRIONES-NAGATA M P, MARTINEZ-GOSS M R, HORI K. A comparison of the morpho-cytology and chemical composition of the two forms of the cyanobacterium, Nostoc commune Vauch. from the Philippines and Japan[J]. Journal of Applied Phycology,2007,19(6):675−683. doi: 10.1007/s10811-007-9240-1
    [2]
    LIN Y, HIRAI M, KASHINO Y, et al. Tolerance to freezing stress in cyanobacteria, Nostoc commune and some cyanobacteria with various tolerances to drying stress[J]. Polar Bioscience,2004,17:56−68.
    [3]
    赵清秋. 条斑紫菜多糖的提取、纯化及结构分析[D]. 南京: 南京农业大学, 2012

    ZHAO Q Q. Studies on extraction, purification and characterizations of Polysaccharide from Porphyra yezoensis[D]. Nanjing: Nanjing Agricultural University, 2012.
    [4]
    马飞. 两种经济藻类(条斑紫菜、地木耳)品质相关组分研究[D]. 南京: 南京师范大学, 2013

    MA F. Study on quality related components of two economic algae (Porphyra yezoensis and Auricularia auricula)[D]. Nanjing: Nanjing Normal University, 2014.
    [5]
    张翼, 李晓明, 王斌贵. 海藻生物活性物质研究的回顾与展望[J]. 世界科技研究与发展,2005(5):62−69. [ZHANG Y, LI X M, WANG B G. Review and prospect of seaweed derived bioactive substances[J]. World Sci-Tech R&D,2005(5):62−69.

    ZHANG Y, LI X M, WANG B G. Review and Prospect of Seaweed Derived Bioactive Substances[J]. WORLD SCI-TECH R&D, 2005(5): 62-69.
    [6]
    钱伟靖, 胡文彬, 施庆忠, 等. 条斑紫菜提取液的降血脂作用及其临床观察[J]. 中国海洋药物,1998(2):43−45. [QIAN W J, HU W B, SHI Q Z, et al. Effect of the extract from Porphyra yezoensis is ueda on hyperlipemia and clinical observation[J]. Chinese Journal of Marine Drugs,1998(2):43−45.

    QIAN WJ, HU W B, SHI Q Z, et al. Effect of the extract from Porphyra yezoensis is ueda on hyperlipemia and clinical observation[J]. Chinese Journal of Marine Drugs, 1998(2): 43-45.
    [7]
    周慧萍, 陈琼华. 紫菜多糖的抗凝血和降血脂作用[J]. 中国药科大学学报,1990(6):358−360. [ZHOU H P, CHEN Q H. Anticoagulative and antilipemic effect of polysaccharide from Porphyra yezoensis Ueda[J]. Journal of China Pharmaceutical University,1990(6):358−360. doi: 10.3321/j.issn:1000-5048.1990.06.011

    ZHOU H P, CHEN Q H. Anticoagulative and antilipemic effect of polysaccharide from Porphyra yezoensis Ueda[J]. Journal of China Pharmaceutical University, 1990(6): 358-360. doi: 10.3321/j.issn:1000-5048.1990.06.011
    [8]
    YOSHIZAWA Y, ENOMOTO A, TODOH H, et al. Activation of murine macrophages by polysaccharide fractions from marine algae (Porphyra yezoensis)[J]. Biosci Biotechnol Biochem,1993,57(11):1862−1866. doi: 10.1271/bbb.57.1862
    [9]
    安载学, 王昱, 徐晓红, 等. 中日韩紫菜产业回顾与分析[J]. 农业与技术,2011,31(2):57−60. [AN Z X, WANG Y, XU X H, et al. Review and analysis of laver industry in China, Japan and South Korea[J]. Agriculture and Technology,2011,31(2):57−60.

    AN Z X, WANG Y, XU X H, et al. Review and analysis of laver industry in China, Japan and South Korea[J]. Agriculture and Technology, 2011, 31(2): 57-60.
    [10]
    李庆鹏, 崔文慧, 丁海燕, 等. 紫菜国际标准制定对我国紫菜产业的影响[J]. 农产品加工(学刊),2013(24):42−44,48. [LI Q P, CUI W H, DING H Y, et al. The influence of laver international standards on laver industry in China[J]. Academic Periodical of Farm Products Processing,2013(24):42−44,48.

    LI Q P, CUI W H, DING H Y, et al. The influence of laver international standards on laver industry in China[J]. Academic Periodical of Farm Products Processing, 2013(24): 42-44, 48.
    [11]
    王联珠, 殷邦忠, 戴卫平, 等. 紫菜国际标准制定对我国紫菜产业的影响[J]. 渔业科学进展,2013,34(6):143−148. [WANG L Z, YIN B Z, DAI W P, et al. The impact of formulation of international standards for laver products on Chinese laver industry[J]. Progerss in Fishery Sciences,2013,34(6):143−148. doi: 10.3969/j.issn.1000-7075.2013.06.022

    WANG L Z, YIN B Z, DAI W P, et al. The impact of formulation of international standards for laver products on Chinese laver industry[J]. Progerss in Fishery Sciences, 2013, 34(6): 143-148. doi: 10.3969/j.issn.1000-7075.2013.06.022
    [12]
    陆婉珍. 现代近红外光谱分析技术[M]. 北京: 中国石化出版社, 2007: 1

    LU W Z. Near Infrared Spectrometry[M]. Beijing: China Petrochemical Press, 2007: 1.
    [13]
    李稳稳. 基于深度学习的近红外光谱分析[D]. 杭州: 中国计量大学, 2018: 1−7.

    LI W W. Near-infrared spectral analysis based on deep learning[D]. Hangzhou: China Jiliang University, 2018: 1−7.
    [14]
    MARQUES EJN, FREITAS STD. Performance of new low-cost handheld NIR spectrometers for nondestructive analysis of umbu ( Spondias tuberosa Arruda) quality[J]. Food Chemistry,2020:323.
    [15]
    HADI P, GEERTVAN K, YANNICK W, et al. Integration of handheld NIR and machine learning to “Measure & Monitor” chicken meat authenticity[J]. Food Control,2020:107149.
    [16]
    闫思雨, 寇婕妤, 张茜, 等. 冷藏鲜切猕猴桃片微生物污染的近红外检测[J]. 陕西科技大学学报,2019,37(5):46−52,62. [YAN S Y, KOU Y J, ZHANG Q, et al. Near infrared detection of microbial contamination in refrigeration fresh Kiwi slices[J]. Journal of Shaanxi University of Science,2019,37(5):46−52,62. doi: 10.3969/j.issn.1000-5811.2019.05.008

    YAN S Y, KOU Y J, ZHANG Q, et al. Near infrared detection of microbial contamination in refrigeration fresh Kiwi slices[J]. Journal of Shaanxi University of Science, 2019, 37(5): 46-52, 62. doi: 10.3969/j.issn.1000-5811.2019.05.008
    [17]
    褚小立, 刘慧颖, 燕泽程. 近红外光谱分析技术实用手册[M]. 北京: 机械工业出版社, 2016

    CHU X L, LIU H Y, YAN Z C. Practical manual of near infrared spectral analysis techniques[M]. Beijing: China Machine Press, 2016.
    [18]
    褚小立, 袁洪福, 陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展,2004(4):528−542. [CHU X L, YUAN H F, LU W Z. Progress and application of spectral data pretreatment and wavelength selection methods in nir analytical technique[J]. Progress in Chemistry,2004(4):528−542. doi: 10.3321/j.issn:1005-281X.2004.04.008

    CHU X L, YUAN H F, LU W Z. Progress and application of spectral data pretreatment and wavelength selection methods in nir analytical technique[J]. Progress in Chemistry, 2004(4): 528-542. doi: 10.3321/j.issn:1005-281X.2004.04.008
    [19]
    张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用,2021,57(11):57−69. [ZHANG C, GUO Y, LI M. Review of development and application of artificial neural network models[J]. Computer Engineering and Applications,2021,57(11):57−69. doi: 10.3778/j.issn.1002-8331.2102-0256

    ZHANG C, GUO Y, LI M. Review of development and application of artificial neural network models[J]. Computer Engineering and Applications, 2021, 57(11): 57-69. doi: 10.3778/j.issn.1002-8331.2102-0256
    [20]
    LOU G X, SHI H Z. Face Image recognition based on convolutional neural network[J]. China Communications,2020,17(2):117−124. doi: 10.23919/JCC.2020.02.010
    [21]
    田潇瑜, 黄星奕, 白竣文, 等. 基于近红外光谱技术的紫薯贮藏期间花青素含量检测[J]. 农业机械学报,2019,50(2):350−355. [TIAN X Y, HUANG X Y, BAI J W, et al. Detection of anthocyanin content of purple sweet potato during storage period based on near infrared spectroscopy[J]. Transactions of The Chinese Society of Agricultural Machinery,2019,50(2):350−355. doi: 10.6041/j.issn.1000-1298.2019.02.040

    TIAN X Y, HUANG X Y, BAI J W, et al. Detection of anthocyanin content of purple sweet potato during storage period based on near infrared spectroscopy[J]. Transactions of The Chinese Society of Agricultural Machinery, 2019, 50(2): 350-355. doi: 10.6041/j.issn.1000-1298.2019.02.040
    [22]
    刘鹏, 蒋雪松, 沈飞, 等. 近红外光谱技术的花生产毒霉菌侵染快速检测[J]. 光谱学与光谱分析,2017,37(5):1397−1402. [LIU P, JIANG X S, SHEN F, et al. Rapid detection of toxigenic fungal contamination in peanuts with near infrared spectroscopy technology[J]. Spectroscopy and Spectral Analysis,2017,37(5):1397−1402.

    LIU PENG, JIANG XUESONG, SHEN FEI, et al. Rapid detection of toxigenic fungal contamination in peanuts with near infrared spectroscopy technology[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1397-1402.
    [23]
    刘建学, 徐宝成, 钟先锋, 等. 原料乳中大肠菌群的近红外光谱快速分析[C]// 北京: 全国近红外光谱学术会议, 2006

    LIU J X, XU B C, ZHONG X F, et al. A rapid quantitation assay of microbes in milk based on near infrared spectroscopy [C]// Beijing: The Chinese Conference on Near Infrared Spectroscopy, 2006.
    [24]
    PEREIRA J M, LEME L M, PERDONCINI M, et al. Fast discrimination of milk contaminated with Salmonella sp. via near-infrared spectroscopy[J]. Food Analytical Methods,2018,11:1878−1885. doi: 10.1007/s12161-017-1090-0
    [25]
    ZHANG X L, LIN T, XU J F, et al. DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis[J]. Analytica Chimica Acta,2019:1058. doi: 10.1016/j.aca.2019.01.002
    [26]
    CRISTINA Q, PEREIRA MD, CLARA S. Near-infrared spectroscopy for the detection and quantification of bacterial contaminations in pharmaceutical products[J]. International journal of pharmaceutics, 2015, 492(1−2).
    [27]
    ACHATA E, OLIVEIRA M, ESQUERRE C, et al. Visible and NIR hyperspectral imaging and chemometrics for prediction of microbial quality of beef Longissimus dorsi m. under simulated normal and abuse storage conditions[J]. LWT,2020,128:109463. doi: 10.1016/j.lwt.2020.109463
    [28]
    曾斯杰, 马金爽, 王玥, 等. 基于近红外光谱技术快速检测青金桔果粉中微生物菌数[J]. 海南师范大学学报(自然科学版),2020,33(1):30−35. [CAO S J, MA J S, WANG Y, et al. Detection of total microorganism counts in kumquat powder by near-infrared spectroscopy[J]. Journal of Nanjing Normal University (Natural Science Edition),2020,33(1):30−35.

    CAO S J, MA J S, WANG Y, et al. Detection of total microorganism counts in kumquat powder by near-infrared spectroscopy[J]. Journal of Nanjing Normal University (Natural Science Edition), 2020, 33(1): 30-35.
    [29]
    REGO G, FERRERO F, VALLEDOR M, et al. A portable IoT NIR spectroscopic system to analyze the quality of dairy farm forage[J]. Computers and Electronics in Agriculture,2020,175:105578. doi: 10.1016/j.compag.2020.105578
  • Related Articles

    [1]XU Lan-ying, JIN Li, XU Yin, ZHANG Yi-fan, LIU Si-si, LONG Tao. Adaptability Study of the Complexation and Color Rendering Systems on Determination of Total Flavonoids in Kunlun Coreopsis tinctoria by Spectrophotometry[J]. Science and Technology of Food Industry, 2020, 41(13): 247-252. DOI: 10.13386/j.issn1002-0306.2020.13.039
    [2]ZHU Mao-mao, WANG Gang, FENG Liang. Screen of AGEs Specific Binding Components in Milk Powder by Cell Membrane Immobilized Chromatography[J]. Science and Technology of Food Industry, 2018, 39(22): 257-261,269. DOI: 10.13386/j.issn1002-0306.2018.22.045
    [3]LI Lin, HUANG Ping-ping, LI Hua-min, WANG Ya-ping, NI Wei-wei. Effect of Different Extraction Methods on the Content of EPA and DHA in Fish Oil by Gas Chromatography[J]. Science and Technology of Food Industry, 2018, 39(15): 255-259. DOI: 10.13386/j.issn1002-0306.2018.15.045
    [4]YANG Yu-kun, SONG Jia, QIAO Shen, GUO Yuan-yuan, CHANG Yuan-yuan, WANG Xing-hua. Simultaneous determination of lactic acid and acetic acid in enzyme solution by high performance liquid chromatography[J]. Science and Technology of Food Industry, 2018, 39(10): 246-250. DOI: 10.13386/j.issn1002-0306.2018.10.045
    [5]MAO Shan-qiao, YANG Feng, HUANG Yong-chun. Analyze the influence of hydrodynamic cavitation on sucrose by high performance liquid chromatography[J]. Science and Technology of Food Industry, 2017, (01): 189-192. DOI: 10.13386/j.issn1002-0306.2017.01.028
    [6]HAN Ting-ting, CUI He, DUAN Xiao-juan, SONG Tian, JI Hong-wei, LI Hui-xin, CAI Feng, ZHU Qian-lin. Determination of four anions in alcohol and methanol by ion chromatography[J]. Science and Technology of Food Industry, 2016, (11): 284-288. DOI: 10.13386/j.issn1002-0306.2016.11.050
    [7]HU Xiao-ke, SUN Dan-hong, WEN Jun. Determination of aflatoxins B1, B2, G1, and G2 in foods by high performance liquid chromatography with pre-column derivation[J]. Science and Technology of Food Industry, 2015, (12): 49-52. DOI: 10.13386/j.issn1002-0306.2015.12.001
    [8]GUO Chun-hai, LIU Bao-sheng, MAO Pei-xin. Determination of residues of NVP in PVPP by high performance liquid chromatography[J]. Science and Technology of Food Industry, 2015, (04): 76-78. DOI: 10.13386/j.issn1002-0306.2015.04.007
    [9]TANG Le-pan, ZHOU Yong-yan, YU Ai-nong. Comparison of UV spectrophotometry and HPLC in determination of ascorbic acid in Maillard reaction[J]. Science and Technology of Food Industry, 2014, (10): 79-82. DOI: 10.13386/j.issn1002-0306.2014.10.008
    [10]WU Yan-lei, LIN Xiao-yang, HU Jing, ZHAO Bo, ZHU Yong-hong. Fast determination of 18 synthetic colors in foods by high performance liquid chromatography[J]. Science and Technology of Food Industry, 2013, (24): 49-52. DOI: 10.13386/j.issn1002-0306.2013.24.024
  • Cited by

    Periodical cited type(7)

    1. 孟新涛,许铭强,张婷,古丽米热·祖努纳,牛逍瞳,郭金宝,刘国庆,马燕. 基于GC-IMS技术分析新疆不同品种核桃油挥发性成分的差异. 中国油脂. 2025(03): 102-109 .
    2. 古丽米热·祖努纳,孟新涛,叶朵朵,付慧鑫,乔雪,乔雅洁,张婷. 不同储藏温度下鲜羊肉品质及风味的变化. 现代食品科技. 2025(03): 203-221 .
    3. 乔雪,乔雅洁,付慧鑫,孟新涛,张婷. 低压静电场辅助解冻对牛肉品质的影响. 食品工业科技. 2024(17): 48-56 . 本站查看
    4. 杨秉坤,剧柠,丁雨红,郭蓉,龚绵红. 沙棘酸奶挥发性风味物质的GC-IMS表征. 食品工业科技. 2023(13): 308-315 . 本站查看
    5. 张凡,张宇帆,苏心悦,徐文雅,安焕炯,马倩云,孙剑锋,王颉,王文秀. 基于顶空气相离子迁移谱的干腐病马铃薯挥发性成分分析. 食品科学. 2022(06): 317-323 .
    6. 王福成,米思,李劲松,王雨行,王向红. 基于气相色谱-离子迁移谱技术分析不同包装条件对黄瓜风味的影响. 食品工业科技. 2022(08): 296-304 . 本站查看
    7. 马姗,于文龙,焦英帅,刘卫华,王向红. 不同减菌处理对凡纳对虾贮藏期间品质的影响. 食品科技. 2022(03): 116-124 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (155) PDF downloads (14) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return