PANG Wenjing, HAN Qingzhu, YOU Jiajia, et al. Properties of Pseudomonas aeruginosa Phage K4 and Its Applications in Food Preservation[J]. Science and Technology of Food Industry, 2022, 43(16): 130−139. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110193.
Citation: PANG Wenjing, HAN Qingzhu, YOU Jiajia, et al. Properties of Pseudomonas aeruginosa Phage K4 and Its Applications in Food Preservation[J]. Science and Technology of Food Industry, 2022, 43(16): 130−139. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110193.

Properties of Pseudomonas aeruginosa Phage K4 and Its Applications in Food Preservation

More Information
  • Received Date: November 16, 2021
  • Available Online: June 14, 2022
  • Objective: To study phage applications in the control of bacteria contaminations, Pseudomonas aeruginosa phage K4 was characterized for its biological characteristics and inhibition effects of bacterial growth. Methods: One-step growth curve, phage stability, genome sequencing, comparative genomics analysis, and growth inhibition curve were conducted in this work. Results: One-step growth curve showed that phage K4 had a latent phase of 15 min and a burst size of about 85 PFU/infection center, displaying a strong infectivity. Under different MOIs (multiplicity of infection), phage K4 efficiently inhibited the growth of the host cells. Genomic analysis revealed that phage K4 had a genome of 50358 bp with 77 coding sequences and 1 tRNA-Arg gene. Comparative genomics showed that the genome of phage K4 shared an identity of 95.08% with Pseudomonas virus PA11 which belongs to the Paundecimvirus genus of the Zobellviridae family, suggesting that phage K4 might be a new member of the Paundecimvirus genus. In application assays, phage K4 could significantly control the growth of the host cells in sterilized milk and ready-to-eat beef samples along with obvious reproductions of phage K4. In conclusion, the data suggested that phage K4 was a lytic virus that replicated rapidly with relatively high bactericidal activity. Conclusion: The genome of phage K4 did not carry genes for integration, antibiotic resistance, and virulence, appropriately to be selected as a biocontrol agent in the control and prevention of P. aeruginosa contaminations in foods.
  • [1]
    C K STOVER, X Q T PHAM, A L ERWIN, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunisticpathogen[J]. Nature, 2000, 406(6799): 959−964.
    [2]
    A HERO D, L GOODRIDGE, J J J O F P ROHDE. Recalls of foods due to microbial contamination classified by the Canadian food inspection agency, 2000 to 2017[J]. J Food Prot, 2019, 82(11): 1901−1908.
    [3]
    E KUTTER, D DE VOS, G GVASALIA, et al. Phage therapy in clinical practice: Treatment of human infections[J]. Cybernetics and Systems Analysis, 2010, 11(1): 69−86.
    [4]
    胡申才, 楚乐乐, 周敏. 假单胞菌噬菌体PrH-181对大黄鱼块防腐效果的研究[J]. 食品工业科技,2021,42(6):288−291,324. [HU S C, CHU L L, ZHOU M. Study on antiseptic effect of Pseudomonas phage PrH-181 on Pseudosciaena crocea cubes[J]. Science and Technology of Food Industry,2021,42(6):288−291,324.

    HU S C, CHU L L, ZHOU M. Study on antiseptic effect of Pseudomonas phage PrH-181 on Pseudosciaena crocea cubes[J]. Science and Technology of Food Industry, 2021, 42(6): 288-291, 324.
    [5]
    B K CHAN, S T ABEDON. Phage therapy pharmacology phage cocktails[J]. Adv Appl Microbiol,2012,78:1−23.
    [6]
    G OFIR, R SOREK. Contemporary phage biology: From classic models to new insights[J]. Cell,2018,172(6):1260−1270. doi: 10.1016/j.cell.2017.10.045
    [7]
    刘晓文, 张庆, 宋新慧, 等. 噬菌体降低铜绿假单胞菌所致腐蛋的效果[J]. 畜牧兽医学报,2020,51(7):1756−1763. [LIU X W, ZHANG Q, SONG X H, et al. Effect of phage on reducing rotten eggs caused by Pseudomonas aeruginosa[J]. Journal of Animal Husbandry and Veterinary Medicine,2020,51(7):1756−1763. doi: 10.11843/j.issn.0366-6964.2020.07.028

    LIU X W, ZHANG Q, SONG X H, et al. Effect of phage on reducing rotten eggs caused by Pseudomonas aeruginosa[J]. Journal of Animal Husbandry and Veterinary Medicine, 2020, 51(7): 1756-1763. doi: 10.11843/j.issn.0366-6964.2020.07.028
    [8]
    J LI, Y LI, Y DING, et al. Characterization of a novel siphoviridae Salmonella bacteriophage T156 and its microencapsulation application in food matrix[J]. Food Res Int,2021,140:110004. doi: 10.1016/j.foodres.2020.110004
    [9]
    H W BAE, Y H CHO. Complete genome sequence of Pseudomonas aeruginosa podophage MPK7, which requires type IV pili for infection[J]. Genome Announc,2013,1(5):e00744−00713.
    [10]
    C RONCERO, A DARZINS, M J CASADABAN. Pseudomonas aeruginosa transposable bacteriophages D3112 and B3 require pili and surface growth for adsorption[J]. J Bacteriol,1990,172(4):1899−1904. doi: 10.1128/jb.172.4.1899-1904.1990
    [11]
    X PAN, X CUI, F ZHANG, et al. Genetic evidence for O-specific antigen as receptor of Pseudomonas aeruginosa phage K8 and its genomic analysis[J]. Frontiers in Microbiology,2016,7:252.
    [12]
    X CUI, J YOU, L SUN, et al. Characterization of Pseudomonas aeruginosa phage C11 and identification of host genes required for virion maturation[J]. Reo,2016,6(1):39130.
    [13]
    ZHANG F J, HUANG K C, YANG X J, et al. Characterization of a novel lytic podovirus O4 of Pseudomonas aeruginosa[J]. Archives of Virology,2018,163:2377−2383. doi: 10.1007/s00705-018-3866-y
    [14]
    LI L Y, PAN X W, CUI X J, et al. Characterization of Pseudomonas aeruginosa phage K5 genome and identification of its receptor related genes[J]. Journal of Basic Microbiology: An International Journal on Morphology, Physiology, Genetics, and Ecology of Microorganisms,2016,56(12):1344−1353.
    [15]
    VACA-PACHECO S, PANIAGUA-CONTRERAS G L, GARCÍA-GONZÁLEZ O, et al. The clinically isolated FIZ15 bacteriophage causes lysogenic conversion in Pseudomonas aeruginosa PAO1[J]. Current Microbiology,1999,38(4):239−243. doi: 10.1007/PL00006794
    [16]
    李明, 申晓冬, 周莹冰, 等. 铜绿假单胞菌噬菌体PaP1生物学特性的研究[J]. 第三军医大学学报,2005(9):860−863. [LI M, SHEN X D, ZHOU Y B, et al. Study on biological characteristics of Pseudomonas aeruginosa phage Pap1[J]. Journal of the Third Military Medical University,2005(9):860−863. doi: 10.3321/j.issn:1000-5404.2005.09.016

    LI M, SHEN X D, ZHOU Y B, et al. Study on biological characteristics of Pseudomonas aeruginosa phage Pap1[J]. Journal of the Third Military Medical University, 2005(9): 860-863. doi: 10.3321/j.issn:1000-5404.2005.09.016
    [17]
    周莹冰, 申晓冬, 李明, 等. 铜绿假单胞菌噬菌体PaP3生物学特性的研究[J]. 解放军医学杂志,2006(10):999−1001. [ZHOU Y B, SHEN X D, LI M, et al. Study on biological characteristics of Pseudomonas aeruginosa phage PaP3[J]. Journal of PLA Medicine,2006(10):999−1001. doi: 10.3321/j.issn:0577-7402.2006.10.022

    ZHOU Y B, SHEN X D, LI M, et al. Study on biological characteristics of Pseudomonas aeruginosa phage PaP3[J]. Journal of PLA medicine, 2006(10): 999-1001. doi: 10.3321/j.issn:0577-7402.2006.10.022
    [18]
    GARBE J, WESCHE A, BUNK B, et al. Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions[J]. BMC Microbiology,2010,10(1):301. doi: 10.1186/1471-2180-10-301
    [19]
    Z CHEGINI, A KHOSHBAYAN, M TAATI MOGHADAM, et al. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review[J]. Ann Clin Microbiol Antimicrob,2020,19(1):45. doi: 10.1186/s12941-020-00389-5
    [20]
    LI L Y, YANG H J, SUN L, et al. Classification of 17 newly isolated virulent bacteriophages of Pseudomonas aeruginosa[J]. Revue Canadienne De Microbiologie,2010,56(11):925−933. doi: 10.1139/W10-075
    [21]
    T J BRADLEY, N H KHAN. The production of extracellular lipids by Pseudomonas aeruginosa NCTC 2000 in stationary liquid media containing macrogols[J]. J Pharm Pharmacol,1974,26(11):900−902.
    [22]
    L Y LI, H J YANG, H YUE. Isolation and classification of the bacteriophages of Pseudomonas aeruginosa and their application on biofilm control[J]. Chinese Journal of Microbiology and Immunology, 2011: 330-334.
    [23]
    R K AZIZ, D BARTELS, A A BEST, et al. The RAST server: Rapid annotations using subsystems technology[J]. BMC Genomics,2008,9(1):75. doi: 10.1186/1471-2164-9-75
    [24]
    MAHRAM A, HERBORDT M C. NCBI BLASTP on high-performance reconfigurable computing systems[J]. Acm Transactions on Reconfigurable Technology & Systems,2015,7(4):1−20.
    [25]
    GRIN I, LINKE D. GCView: The genomic context viewer for protein homology searches[J]. Nucleic Acids Research,2011,39(Suppl_2):W353−W356.
    [26]
    CONTRERAS-MOREIRA B, VINUESA P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis[J]. Applied Environmental Microbiology,2013,79(24):7696−7701. doi: 10.1128/AEM.02411-13
    [27]
    MAHADEVAN P, KING J F, SETO D. CGUG: In silico proteome and genome parsing tool for the determination of "core" and unique genes in the analysis of genomes up to ca. 1.9 Mb[J]. BMC Research Notes,2009,2(1):168. doi: 10.1186/1756-0500-2-168
    [28]
    吴柳, 罗娟, 杨竹兰, 等. 铜绿假单胞菌噬菌体PA-27-1的分离及其生物学特性[J]. 第三军医大学学报,2019,41(4):315−322. [WU L, LUO J, YANG Z L, et al. Isolation and biological characteristics of Pseudomonas aeruginosa phage PA-27-1[J]. Journal of the Third Military Medical University,2019,41(4):315−322.

    WU L, LUO J, YANG Z L, et al. Isolation and biological characteristics of Pseudomonas aeruginosa phage PA-27-1[J]. Journal of the Third Military Medical University, 2019, 41(4): 315-322.
    [29]
    郭棵棵, 杨雨卉, 沈伟, 等. 一株感染铜绿假单胞菌的双链RNA噬菌体PaP6的分离和鉴定[J]. 微生物学通报,2016,43(5):948−954. [GUO K K, YANG Y H, SHEN W, et al. Isolation and identification of a double stranded RNA phage PaP6 infected with Pseudomonas aeruginosa[J]. Bulletin of Microbiology,2016,43(5):948−954.

    GUO K K, YANG Y H, SHEN W, et al. Isolation and identification of a double stranded RNA phage PaP6 infected with Pseudomonas aeruginosa[J]. Bulletin of Microbiology, 2016, 43(5): 948-954.
    [30]
    吴芷莹, 金泽源, 李万霞, 等. PB1样铜绿假单胞菌噬菌体PHW2的生物学特性[J]. 微生物学通报,2021,48:3205−3217. [WU Z Y, JIN Z Y, LI W X, et al. Biological characteristics of PB1 like Pseudomonas aeruginosa phage PHW2[J]. Bulletin of Microbiology,2021,48:3205−3217.

    WU Z Y, JIN Z Y, LI W X, et al. Biological characteristics of PB1 like Pseudomonas aeruginosa phage PHW2[J]. Bulletin of Microbiology, 2021, 48: 3205-3217.
    [31]
    徐彬, 高晶, 郭晓奎, 等. 铜绿假单胞菌噬菌体D204的生物学特性和基因组学研究[J]. 上海交通大学学报(医学版),2016,36(1):1−5. [XU B, GAO J, GUO X K, et al. Biological characteristics and genomics of Pseudomonas aeruginosa phage D204[J]. Journal of Shanghai Jiaotong University (Medical Edition),2016,36(1):1−5.

    XU B, GAO J, GUO X K, et al. Biological characteristics and genomics of Pseudomonas aeruginosa phage D204[J]. Journal of Shanghai Jiaotong University (Medical Edition), 2016, 36(1): 1-5.
    [32]
    王琳, 饶贤才, 胡福泉, 等. 铜绿假单胞菌噬菌体PaP3的溶原化条件及稳定性研究[J]. 医学研究生学报,2009,22(11):1131−1135. [WANG L, RAO X C, HU F Q, et al. Study on lysogenic conditions and stability of Pseudomonas aeruginosa phage PaP3[J]. Journal of Medical Postgraduates,2009,22(11):1131−1135. doi: 10.3969/j.issn.1008-8199.2009.11.004

    WANG L, RAO X C, HU F Q, et al. Study on lysogenic conditions and stability of Pseudomonas aeruginosa phage PaP3[J]. Journal of Medical Postgraduates, 2009, 22(11): 1131-1135. doi: 10.3969/j.issn.1008-8199.2009.11.004
    [33]
    JIANG Y H, LIU J Q, ZHAO C Y, et al. Isolation and genome sequencing of a novel Pseudomonas aeruginosa phage PA-YS35[J]. Current Microbiology,2020,77(1):123−128. doi: 10.1007/s00284-019-01792-8
    [34]
    丛聪, 袁玉玉, 王丽丽, 等. 噬菌体在食品应用中的安全性[J]. 国外医药(抗生素分册),2019,40(5):410−419. [CONG C, YUAN Y Y, WANG L L, et al. Safety of bacteriophage in food application[J]. Foreign Medicine (Antibiotics),2019,40(5):410−419.

    CONG C, YUAN Y Y, WANG L L, et al. Safety of bacteriophage in food application[J]. Foreign Medicine (Antibiotics), 2019, 40(5): 410-419.
    [35]
    周维, 孙利, 尤甲甲, 等. 抑制铜绿假单胞菌生长的噬菌体K4基因的筛选[J]. 天津科技大学学报,2018,33(4):7−13. [ZHOU W, SUN L, YOU J J, et al. Screening of phage K4 gene inhibiting the growth of Pseudomonas aeruginosa[J]. Journal of Tianjin University of Science and Technology,2018,33(4):7−13.

    ZHOU W, SUN L, YOU J J, et al. Screening of phage K4 gene inhibiting the growth of Pseudomonas aeruginosa[J]. Journal of Tianjin University of Science and Technology, 2018, 33(4): 7-13.
    [36]
    BARYLSKI J, ENAULT F, DUTILH B E, et al. Analysis of spounaviruses as a case study for the overdue reclassification of tailed phages[J]. Systematic Biology,2019,69(1):110−123.
    [37]
    WALKER P J, SIDDELL S G, LEFKOWITZ E J, et al. Changes to virus taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses[J]. Archives of Virology,2019,164(9):2417−2429. doi: 10.1007/s00705-019-04306-w
    [38]
    王辉, 张锋华, 任璐, 等. 噬菌体在食品中控制致病菌的应用[J]. 食品工业,2013(7):196−200. [WANG H, ZHANG F H, REN L, et al. Application of bacteriophage in controlling pathogenic bacteria in food[J]. Food Industry,2013(7):196−200.

    WANG H, ZHANG F H, REN L, et al. Application of bacteriophage in controlling pathogenic bacteria in food[J]. Food Industry, 2013(7): 196-200.
    [39]
    DONOVAN D M, LARDEO M, FOSTER-FREY J. Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin[J]. FEMS Microbiol Lett,2006,265(1):133−139. doi: 10.1111/j.1574-6968.2006.00483.x
    [40]
    杨慧轩, 罗欣, 朱立贤, 等. 噬菌体在控制肉源致病菌中的应用研究进展[J]. 食品科学,2021,42(9):293−301. [YANG H X, LUO X, ZHU L X, et al. Advances in the application of bacteriophages in the control of meat borne pathogens[J]. Food Science,2021,42(9):293−301. doi: 10.7506/spkx1002-6630-20200428-372

    YANG H X, LUO X, ZHU L X, et al. Advances in the application of bacteriophages in the control of meat borne pathogens[J]. Food Science, 2021, 42(9): 293-301. doi: 10.7506/spkx1002-6630-20200428-372
  • Cited by

    Periodical cited type(6)

    1. 江英杰,李明昊,罗开沛,杨露. 石斛多糖的药理作用及现代应用进展. 中药与临床. 2024(01): 97-102 .
    2. 李祥坤,曾亦菡. 响应面优化霍山石斛百香果复合饮料工艺及抗运动疲劳研究. 中国食品添加剂. 2023(01): 272-281 .
    3. 王再花,叶广英,曾灿彪,叶庆生,黄秀红. 铁皮石斛饮料杀菌工艺研制及品质分析. 中国农学通报. 2023(16): 124-130 .
    4. 赵健,周忠光,黄家鹏,林春盛,宫铭海,杨波. 药食同源中草药在防治认知功能障碍中的应用及作用机制研究进展. 医学综述. 2022(08): 1598-1605 .
    5. 赵云龙. 芜菁山楂复合饮料配方优化及其对运动耐力的影响. 食品工业科技. 2022(14): 401-408 . 本站查看
    6. 赵静. 运动疲劳机制及食源性抗疲劳活性成分研究进展. 食品安全质量检测学报. 2021(09): 3565-3571 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (184) PDF downloads (17) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return