WANG Lin, LIU Rongxu, LIU Danyi, et al. Immobilization of Cellulase by Chitosan-Coated Magnetic Nanoparticles[J]. Science and Technology of Food Industry, 2022, 43(16): 74−80. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110183.
Citation: WANG Lin, LIU Rongxu, LIU Danyi, et al. Immobilization of Cellulase by Chitosan-Coated Magnetic Nanoparticles[J]. Science and Technology of Food Industry, 2022, 43(16): 74−80. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110183.

Immobilization of Cellulase by Chitosan-Coated Magnetic Nanoparticles

More Information
  • Received Date: November 15, 2021
  • Available Online: June 12, 2022
  • The design of enzyme-carrier complexes with high stability and selectivity is the focus of research in the field of immobilized enzymes. In this study, magnetic nanoparticles were prepared by precipitation using epichlorohydrin as surfactant and coated with chitosan to immobilize cellulase. Scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and Fourier transform infrared spectrometer (FTIR infrared spectroscopy) were used to characterize Fe3O4 chitosan magnetic nanoparticles, and the characterization and enzymatic properties of immobilized cellulase were studied. Results showed that the prepared magnetic nanoparticles were crystallographically intact and the cellulase was effectively immobilized on the Fe3O4-chitosan carrier surface. In addition, immobilised cellulase had better acid-base stability and thermal stability than free cellulase. It had good activity in the range of pH2~9, and also with better thermostability, remained nearly 50% activity for 4 h at 60 and 70 ℃. After 10 cycles of recycling, the immobilized cellulase remained at a high activity of 52.6%, indicating that Fe3O4-chitosan could be used as an effective carrier for immobilized cellulase, providing a reference for further applications of the immobilized enzyme.
  • [1]
    梁艳莉, 马剑琪, 郭少波. CoFe2O4@PDA@Pt核壳型磁性复合材料的制备及催化性能[J]. 复合材料学报,2021,5(38):1551−1557. [LING Y L, MA J Q, GUO S B. Preparation and catalytic properties of CoFe2O4@PDA@Pt magnetic composite with core shell structure[J]. Acta Materiae Compositae Sinica,2021,5(38):1551−1557.

    LING Y L, MA J Q, GUO S B. Preparation and catalytic properties of CoFe2O4@PDA@Pt magnetic composite with core shell structure[J]. Acta Materiae Compositae Sinica, 2021, 5(38): 1551-1557.
    [2]
    谢宝龙, 陈希, 彭新红,等. 温敏磁性纳米颗粒正渗透汲取剂的制备及性能研究[J]. 工业水处理,2021,41(1):107−112. [XIE B L, CHEN X, PENG X H, et al. Preparation and properties of thermosensitive magnetic nanoparticle forward osmotic draw solution[J]. Industrial Water Treatment,2021,41(1):107−112.

    XIE B L, CHEN X, PENG X H, et al. Preparation and properties of thermosensitive magnetic nanoparticle forward osmotic draw solution[J]. Industrial Water Treatment, 2021, 41(1): 107-112 .
    [3]
    MAKOVEC DKODRE A, ARČON I. The structure of compositionally constrained zinc-ferrite spinel nanoparticles[J]. Journal of Nanoparticle Research,2011(13):1781−1790.
    [4]
    OBAIDAT I M, ISSA B, ALBISS B A, et al. Finite size and surface effects in ferrite nanoparticles[J]. Nanoengineering and Nanomanufacturing,2012(2):325−331.
    [5]
    白姝, 朱云风, 孙彦,等. 聚乙烯亚胺诱导的仿生硅化提高固定化酶的稳定性[J]. 天津大学学报,2021,54(1):10−18. [BAI S, ZHU Y F, SUN Y, et al. Improvement in the stability of immobilized enzyme by polyethylenimine-induced biomimetic silicification[J]. Journal of Tianjin University (Science and Technology),2021,54(1):10−18.

    BAI S, ZHU Y F, SUN Y, et al. Improvement in the stability of immobilized enzyme by polyethylenimine-induced biomimetic silicification[J]. Journal of Tianjin University(Science and Technology), 2021, 54(1): 10-18.
    [6]
    孙俊. 功能性磁性纳米颗粒的制备及其在食品体系中的应用研究[D]. 无锡: 江南大学, 2012.

    SUN J. Preparation and application of functional magnetic nanoparticles in food system[D]. Wuxi: Jiangnan University, 2012.
    [7]
    董剑. 基于树枝状聚合物复合磁性纳米材料的制备表征及其固定化纤维素酶的应用研究[D]. 镇江: 江苏大学, 2017.

    DONG J. Study on the preparation and characterization of dendrimer based composite magnetic nano materials and the application of immobilized cellulase[D]. Zhenjiang: Jiangsu University, 2017.
    [8]
    AKBAR A, SHAKEEL A. A review on chitosan and its nanocomposites in drug delivery[J]. International Journal of Biological Macromolecules,2018,109(1):273−286.
    [9]
    TUNCAGIL S, KAYAHAN S K, BAYRAMOGLU G, et al. l -Dopa synthesis using tyrosinase immobilized on magnetic beads[J]. Journal of Molecular Catalysis B Enzymatic,2009,58(1−4):187−193. doi: 10.1016/j.molcatb.2008.12.014
    [10]
    阳生红, 蒋志洁, 张日理. Cr-Fe共掺CeO2纳米颗粒的结构和铁磁性能[J]. 磁性材料及器件,2021,52(2):1−5. [YANG S H, JIANG Z J, ZHANG R L. Structure and ferromagnetic properties of Cr-Fe co-doped CeO2 nanoparticles[J]. Journal of Magnetic Materials and Devices,2021,52(2):1−5.

    YANG S H, JIANG Z J, ZHANG R L. Structure and ferromagnetic properties of Cr-Fe co-doped CeO2 nanoparticles[J]. Journal of Magnetic Materials and Devices, 2021, 52(2): 1-5.
    [11]
    孙剑飞, 包斯元. 磁性纳米颗粒介导的电磁神经治疗的最新进展(英文)[J]. 包装工程,2021,42(4):34−44. [SUN J F, BAO S Y. Recent progress on electromagnetic nerve therapy mediated by magnetic nanoparticles[J]. Packaging Engineering,2021,42(4):34−44.

    SUN J F, BAO S Y. Recent progress on electromagnetic nerve therapy mediated by magnetic nanoparticles[J]. Packaging Engineering, 2021, 42(4): 34-44.
    [12]
    王来森, 武文斌, 张钦福,等. 磁性纳米粒子组装颗粒膜的电磁输运特性[J]. 厦门大学学报,2021,60(2):235−246. [WANF L S, WU W B, ZHANG Q F, et al. Electromagnetic transport properties of magnetic nanoparticle-assembled granular films[J]. Journal of Xiamen University,2021,60(2):235−246.

    WANF L S, WU W B, ZHANG Q F, et al. Electromagnetic transport properties of magnetic nanoparticle-assembled granular films[J]. Journal of Xiamen University, 2021, 60(2): 235-246.
    [13]
    刘庆祖, 刘建恒, 王润生,等. 聚乙二醇化锌铁氧磁性纳米颗粒对咪喹莫特的载药性能及细胞毒性研究[J]. 解放军医学院学报,2021,42(4):444−450. [LIU Q Z, LIU J H, WANG R S, et al. Drug-loading properties and toxicity of imiquimod-loaded zinc ferrite magnetic nanoparticle[J]. Acad J Chin PLA Med Sch,2021,42(4):444−450. doi: 10.3969/j.issn.2095-5227.2021.04.016

    LIU Q Z, LIU J H, WANG R S, et al. Drug-loading properties and toxicity of imiquimod-loaded zinc ferrite magnetic nanoparticle[J]. Acad J Chin PLA Med Sch, 2021, 42(4): 444-450. doi: 10.3969/j.issn.2095-5227.2021.04.016
    [14]
    乔会杰. 基于γ-Fe2O3/石墨烯磁性油墨在柔性电子器件中的应用研究[D]. 上海: 上海师范大学, 2021.

    QIAO H J. Research on the application of γ-Fe2O3/graphene magnetic ink in flexible electronic devices[D]. Shanghai : Shanghai Normal University, 2021.
    [15]
    郝莉莉. 磁响应性纳米复合材料的制备及其对降解和生物性能调控机制研究[D]. 合肥: 中国科学技术大学, 2021.

    HAO L L. Preparation of magnetically responsive nanocomposite and its regulation mechanism of biodegradability and bio-performance [D]. Hefei: University of Science and Technology of China, 2021.
    [16]
    徐国财. 纳米科技导论[M]. 北京: 高等教育出版社, 2005.

    XU G C. Introduction to nanotechnology[M]. Beijing: Higher Education Press, 2005.
    [17]
    刘涛. 磁性纳米颗粒定向固定化脂肪酶及其应用研究[D]. 武汉: 华中科技大学, 2013.

    LIU T. A dissertation submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in microbiology[D]. Wuhan: Huazhong University of Science and Technology, 2013.
    [18]
    周曼. Co和Co/CoO磁性纳米颗粒的制备、表征及磁学性能研究[D]. 杭州: 中国计量大学, 2014.

    ZHOU M. Synthesis, characterization and magnetic properties of Co and Co/CoO magnetic nanoparticles[D]. Hangzhou: China Jiliang University, 2014.
    [19]
    YAN L, XI L, XING Z H, et al. Preparation and characterization of magnetic Fe3O4-chitosan nanoparticles for cellulase immobilization[J]. Cellulose,2017(24):5541−5550.
    [20]
    SÁNCHEZ-RAMÍREZ J, MARTÍNEZ-HERNÁNDEZ J L, SEGURA-CENICEROS P, et al. Cellulases immobilization on chitosan-coated magnetic nanoparticles: Application for agave atrovirens lignocellulosic biomass hydrolysis[J]. Bioprocess and Biosystems Engineering,2017(40):9−22.
    [21]
    JIANG J F, ZHAO J Q, HE C Y. Recyclable magnetic carboxymethyl chitosan/calcium alginate-cellulase bioconjugates for corn stalk hydrolysis[J]. Carbohydrate Polymers,2017,166(15):358−364.
    [22]
    ZHOU Y T, NIE H L, BRANFORD-WHITE C, et al. Removal of Cu2+ from aqueous solution by chitosan-coated magentic nanoparticles modified with alpha-kertoglutaric acid[J]. Journal of Colloid and Interface Science,2009,330:29−37. doi: 10.1016/j.jcis.2008.10.026
    [23]
    李景华. 智能化磁性纳米药物载体系统的构建与生物学评价[D]. 重庆: 重庆大学, 2014.

    LI J H. Preparation of smart magnetic drug delivery nanocarriers and their biological evaluations[D]. Chongqing: Chongqing University, 2014.
    [24]
    韦懿. 磁性纳米复合材料的制备及其固定化纤维素酶的研究[D]. 兰州: 兰州大学, 2016.

    WEI Y. Preparation of magnetic nanocomposite materials for immobilization of celluase[D]. Lanzhou: Lanzhou University, 2016.
    [25]
    杨磊. 表面修饰有阳离子的磁性二氧化硅微粒的制备及其应用[D]. 西安: 西北大学, 2010.

    YANG L. Preparation and application of magnetic silica particles with cationic surface modification[D]. Xi'an: Northwest University, 2010.
    [26]
    NATESAN S, PONNUSAMY C, SUGUMARAN A, et al. Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer[J]. International Journal of Biological Macromolecules,2017,104:1853−1859. doi: 10.1016/j.ijbiomac.2017.03.137
    [27]
    ZHANG Y, ZHOU M T, GAO Y N, et al. Synthesis and magnetocaloric effects of FeNi@SiO2 nanocomposite particles[J]. Journal of Materials Science and Engineering,2021,39(1):16−22.
    [28]
    赵若彤, 韩天昊, 孙大吟,等. 多功能Fe3O4@SiO2Janus颗粒[J]. 化学学报,2020,78:954−960. [ZHAO R T, HAN T H, SUN D Y, et al. Multifunctional Fe3O4@SiO2 janus particles[J]. Acta Chimica Sinica,2020,78:954−960. doi: 10.6023/A20060208

    ZHAO R T, HAN T H, SUN D Y, et al. Multifunctional Fe3O4@SiO2Janus Particles[J]. ACTA CHIMICA SINICA, 2020, 78, 954-960. doi: 10.6023/A20060208
    [29]
    李志伟. 功能磁性纳米颗粒的制备及其在磁靶向和肿瘤诊断中的应用[D]. 兰州: 兰州大学, 2014.

    LI Z W. Preparation of functional magnetic nanoparticles and their applications in magnetic targeting and cancer[D]. Lanzhou: Lanzhou University, 2014.
    [30]
    黄平英. 磁性纳米颗粒固定化酶研究[D]. 武汉: 华中科技大学, 2011.

    HUANG P Y. Study of immobilized enzyme based on magnetic nanoparticles[D]. Wuhan: Huazhong University of Science and Technology, 2011.
    [31]
    DOS SANTOS J C S, GAREIA-GALAN C, RORIGUES R C, et al. Improving the catalytic properties of immobilized lecitase via physical coating with ionic polymers[J]. Enzyme and Microbial Technology,2014,60:1−8. doi: 10.1016/j.enzmictec.2014.03.001
    [32]
    YING L, KANG E T, NEOH K G. Covalent immobilization of glucose oxidase on microporous membranes prepared from poly(vinylidene fluoride) with grafted poly(acrylic acid) side chains[J]. Journal of Membrane Science,2002,208(1-2):361−374. doi: 10.1016/S0376-7388(02)00325-3
    [33]
    JASON J, CHALLA S S, CHANDRA T. Preparation and characterization of cellulase-bound magnetite nanoparticles[J]. Journal of Molecular Catalysis B:Enzymatic,2011,68(2):139−146. doi: 10.1016/j.molcatb.2010.09.010
    [34]
    ALAHAKOON T, KOH W J, CHONG C W X, et al. Immobilization of cellulases on amine and aldehyde functionalized Fe2O3 magnetic nanoparticles[J]. Preparative Biochemistry & Biotechnology,2012,42(3):234−248.
  • Related Articles

    [1]ZHENG Zhenjia, ZHU Wenqing, LIANG Hao, ZHANG Li, ZHANG Peng, MA Yue. Advances in Application of Fingerprint Technology in Food Analysis[J]. Science and Technology of Food Industry, 2021, 42(12): 413-421. DOI: 10.13386/j.issn1002-0306.2020070109
    [2]ZHANG Ling-ling, KONG Juan, LI Xiao-fen, FENG Hua, WANG Xiang-pei, WU Hong-mei. Establishment and Similarity Evaluation of Fingerprint of Different Varieties of Tea[J]. Science and Technology of Food Industry, 2020, 41(8): 242-249. DOI: 10.13386/j.issn1002-0306.2020.08.038
    [3]ZHANG Zhi-jun, YUE Jie, YIN Hua, YU Jun-hong, DONG Jian-jun, ZHOU Yue-nan. Research of construction of DNA fingerprinting for malt varieties[J]. Science and Technology of Food Industry, 2018, 39(6): 92-96. DOI: 10.13386/j.issn1002-0306.2018.06.017
    [4]SU Shi-wei, GUO Shun-tang, ZHANG Chao, ZHANG Ting, LIANG Ming. Signification and identification of food-derived bioactive peptides fingerprint[J]. Science and Technology of Food Industry, 2016, (23): 396-399. DOI: 10.13386/j.issn1002-0306.2016.23.066
    [5]TANG Cheng-cheng, QIU Zhi-dong, YANG Jing, DONG Jin-xiang. Study on quality standard and fingerprint of American ginseng granule[J]. Science and Technology of Food Industry, 2015, (24): 71-75. DOI: 10.13386/j.issn1002-0306.2015.24.006
    [6]LUO Shan, ZHANG Pei, XU Yue-min, LIU Ye-wei, DI Duo-long. Fingerprint analysis of peanut oil based on gas chromatography[J]. Science and Technology of Food Industry, 2014, (08): 58-60. DOI: 10.13386/j.issn1002-0306.2014.08.003
    [7]TANG Zhong-liang, YIN Lian, ZHANG Xu. Comparative study on quality evaluation method of Zhou's prescription based on fingerprint technology[J]. Science and Technology of Food Industry, 2014, (07): 296-302. DOI: 10.13386/j.issn1002-0306.2014.07.088
    [8]ZHAO Jun-feng, MA Li-ping, BAI Zhi-chuan. HPLC fingerprints of Flos Lonicerae in Sichuan-Chongqing[J]. Science and Technology of Food Industry, 2014, (07): 292-295. DOI: 10.13386/j.issn1002-0306.2014.07.007
    [9]FU Qun, GAO Qi, YU Wen-bin, XU Ming-hui, WANG Zhen-yu. Fingerprints study on Pinus koraiensis polyphenols by HPLC[J]. Science and Technology of Food Industry, 2014, (07): 279-283. DOI: 10.13386/j.issn1002-0306.2014.07.006
    [10]Fingerprint of Lu’an Guapian tea based onhigh performance liquid chromatography[J]. Science and Technology of Food Industry, 2012, (24): 58-61. DOI: 10.13386/j.issn1002-0306.2012.24.077
  • Cited by

    Periodical cited type(2)

    1. 谭婉静,张笑薇,白泓,李晓凤,余以刚,肖性龙. 丁香油与月桂酸对金黄色葡萄球菌的协同抑制作用. 现代食品科技. 2022(02): 278-285+265 .
    2. 于航,王海默,钟世勋,吕月琴,刘兆胜,孙汝江. 抗菌肽APSH-07与抗生素对常见致病菌的体外协同抗菌效果研究. 饲料工业. 2021(16): 22-26 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (202) PDF downloads (27) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return