SHI Mengnan, PENG Yun, ZHANG Jie, et al. Biochemical Components and in Vitro Antioxidant Activities of Large-leaf Species Tea Flowers in Yunnan[J]. Science and Technology of Food Industry, 2022, 43(16): 298−306. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110135.
Citation: SHI Mengnan, PENG Yun, ZHANG Jie, et al. Biochemical Components and in Vitro Antioxidant Activities of Large-leaf Species Tea Flowers in Yunnan[J]. Science and Technology of Food Industry, 2022, 43(16): 298−306. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110135.

Biochemical Components and in Vitro Antioxidant Activities of Large-leaf Species Tea Flowers in Yunnan

More Information
  • Received Date: November 11, 2021
  • Available Online: June 11, 2022
  • In this paper, the chemical components and in vitro antioxidant activities of Camellia sinensis, a large-leaf species in Yunnan were studied. The main biochemical indicators of 13 Yunnan large-leaf tea tree flowers and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging ability, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging capacity, total antioxidant capacity (TAC), hydroxyl radical (·OH) scavenging capacity, superoxide anion scavenging capacity, five kinds of in vitro antioxidant indexes were measured. The correlation between the main biochemical components and in vitro antioxidant indexes was analyzed. The results showed that the contents of tea tree flower water extract, tea polyphenols and amino acids were 41.22%~63.73%, 7.74%~13.56%, 1.61%~5.91%, respectively. The contents of caffeine and flavonoids were 4.98~8.46, 4.21~8.63 mg/g, respectively. Each sample showed a certain difference. There were significant differences in the in vitro antioxidant capacity of different tea tree flower samples (P<0.05). Among them, the ancient tea tree flowers of Dijie, Bulang Mountain, and Bingdao showed good antioxidant activities, while the ancient tea flowers of Yangta white tea were the weakest. The antioxidant activity of tea tree flowers in vitro was correlated with biochemical indicators, tea polyphenols were significantly correlated with total antioxidant capacity (P<0.01), epigallocatechin gallate (EGCG), epicatechin gallate Epicatechin gallate (ECG) was significantly correlated with total antioxidant capacity (P<0.05), and the results could be used as an important indicator to predict the antioxidant activity of tea flowers.
  • [1]
    傅志民. 茶树花生化组成、活性成分和资源利用研究进展[J]. 中国茶叶加工,2010(2):18−20. [FU Z M. Research progress on the chemical composition, active ingredients and resource utilization of tea tree peanut[J]. China Tea Processing,2010(2):18−20.

    FU Z M. Research progress on the chemical composition, active ingredients and resource utilization of tea tree peanut[J]. China Tea Processing, 2010(2): 18-20.
    [2]
    官兴丽, 罗理勇, 曾亮. 茶树花的开发利用研究进展[C]//中国茶叶科技创新与产业发展学术研讨会论文集. 重庆: 中国茶叶协会, 2009: 328−340

    GUAN X L, LUO L Y, ZENG L. Research progress on the development and utilization of tea tree flowers[C]//Proceedings of the Academic Symposium on China Tea Technology Innovation and Industrial Development. Chongqing: China Tea Association, 2009: 328−340.
    [3]
    田采云, 周承哲, 傅海峰, 等. 茶树花的保健功效及其研究进展[J]. 园艺与种苗,2019,39(6):6−10. [TIAN C Y, ZHOU C Z, FU H F, et al. The health benefits of tea tree flowers and their research progress[J]. Horticulture and Seedlings,2019,39(6):6−10.

    TIAN C Y, ZHOU C Z, FU H F, et al. The health benefits of tea tree flowers and their research progress[J]. Horticulture and Seedlings, 2019, 39(6): 6-10.
    [4]
    谭月萍, 彭雄根, 尹钟, 等. 茶树花的主要生化成分及生物活性研究进展[J]. 茶叶通讯,2019,46(1):6−9. [TAN Y P, PENG X G, YIN Z, et al. Research progress on the main biochemical components and biological activities of tea flowers[J]. Tea News,2019,46(1):6−9.

    TAN Y P, PENG X G, YIN Z, et al. Research progress on the main biochemical components and biological activities of tea flowers[J]. Tea News, 2019, 46(1): 6-9.
    [5]
    张丹. 茶树花洗手液的研发[D]. 杭州: 浙江大学, 2017

    ZHANG D. Research and development of tea tree flower hand sanitizer[D]. Hangzhou: Zhejiang University, 2017.
    [6]
    HISASHI M, SEIKOU N, TOSHIO M, et al. New biofunctional effects of the flower buds of Camellia sinensis and its bioactive acylated oleanane-type triterpene oligoglycosides[J]. Journal of Natural Medicines,2016,70(4):689−701. doi: 10.1007/s11418-016-1021-1
    [7]
    CHEN D, CHEN G J, DING Y, et al. Polysaccharides from the flowers of tea (Camellia sinensis L.) modulate gut health and ameliorate cyclophosphamide-induced immunosuppression[J]. Journal of Functional Foods,2019,61:103470−103470. doi: 10.1016/j.jff.2019.103470
    [8]
    CHEN D, DING Y, YE H, et al. Effect of long-term consumption of tea (Camellia sinensis L.) flower polysaccharides on maintaining intestinal health in BALB/c mice[J]. Journal of Food Science,2020,85(6):1948−1955. doi: 10.1111/1750-3841.15155
    [9]
    TU Y Y, CHEN L F, REN N, et al. Standardized saponin extract from baiye No.1 tea (Camellia sinensis) flowers induced s phase cell cycle arrest and apoptosis via akt-mdm2-p53 signaling pathway in ovarian cancer cells[J]. Molecules,2020,25(15):3515−3515. doi: 10.3390/molecules25153515
    [10]
    WAY T D, LIN H Y, HUA K T, et al. Beneficial effects of different tea flowers against human breast cancer MCF-7 cells[J]. Food Chemistry,2008,114(4):1231−1236.
    [11]
    WANG Y M, REN N, GARY O R, et al. Anti-proliferative effect and cell cycle arrest induced by saponins extracted from tea (Camellia sinensis) flower in human ovarian cancer cells[J]. Journal of Functional Foods,2017,37(1):310−321.
    [12]
    向明钧, 周卫华, 石发宽, 等. 茶树花黄酮类物质抗肿瘤作用研究[J]. 食品工业科技,2013,34(12):157−160. [XIANG M J, ZHOU W H, SHI F K, et al. Study on the anti-tumor effect of tea tree flower flavonoids[J]. Science and Technology of Food Industry,2013,34(12):157−160.

    XIANG M J, ZHOU W H, SHI F K, et al. Study on the anti-tumor effect of tea tree flower flavonoids[J]. Science and Technology of Food Industry, 2013, 34(12): 157-160.
    [13]
    刘祖生, 陈晓敏, 杨子银, 等. 茶树花抗氧化活性研究[C]//第四届海峡两岸茶业学术研讨会. 成都: 中国茶叶协会, 台湾茶协会, 2006: 283−289

    LIU Z S, CHEN X M, YANG Z Y, et al. Research on the antioxidant activity of Camellia sinensis[C]//The 4th Cross-Strait Tea Industry Symposium. Chengdu: China Tea Association, Taiwan Tea Association, 2006: 283−289.
    [14]
    CHEN Y Y, ZHOU Y, ZENG L T, et al. Occurrence of functional molecules in the flowers of tea (Camellia sinensis) plants: Evidence for a second resource[J]. Molecules,2018,23(4):790−790. doi: 10.3390/molecules23040790
    [15]
    陈冬梅, 李铭, 陈明星. 五指山茶树花功能性成分分析[J]. 食品研究与开发,2017,38(7):119−121. [CHEN D M, LI M, CHEN M X. Analysis of functional components of Wuzhi Camellia flower[J]. Food Research and Development,2017,38(7):119−121. doi: 10.3969/j.issn.1005-6521.2017.07.026

    CHEN D M, LI M, CHEN M X. Analysis of functional components of wuzhi camellia flower[J]. Food Research and Development, 2017, 38(7): 119-121. doi: 10.3969/j.issn.1005-6521.2017.07.026
    [16]
    刘丹, 周跃斌, 周宇. 不同品种茶树花内含成分分析[J]. 茶叶通讯,2019,46(1):17−23. [LIU D, ZHOU Y B, ZHOU Y. Analysis of the components of different varieties of tea flowers[J]. Tea News,2019,46(1):17−23.

    LIU D, ZHOU Y B, ZHOU Y. Analysis of the components of different varieties of tea flowers[J]. Tea News, 2019, 46(1): 17-23.
    [17]
    朱建新, 程福建, 林全女, 等. 茶树花资源综合利用及保健功效研究进展[J]. 安徽农业科学,2021,49(6):7−9. [ZHU J X, CHENG F J, LIN Q N, et al. Research progress on the comprehensive utilization and health effects of tea flower resources[J]. Journal of Anhui Agricultural Sciences,2021,49(6):7−9. doi: 10.3969/j.issn.0517-6611.2021.06.003

    ZHU J X, CHENG F J, LIN Q N, et al. Research progress on the comprehensive utilization and health effects of tea flower resources[J]. Journal of Anhui Agricultural Sciences, 2021, 49(6): 7-9. doi: 10.3969/j.issn.0517-6611.2021.06.003
    [18]
    LIN Y S, WU S S, LIN J K. Determination of tea polyphenols and caffeine in tea flowers (Camellia sinensis) and their hydroxyl radical scavenging and nitric oxide suppressing effects[J]. Journal of Agricultural and Food Chemistry,2003,51(4):975−980. doi: 10.1021/jf020870v
    [19]
    马蕊, 林勇, 滕翠琴, 等. 茶树花体外抗氧化活性[J]. 食品工业,2019,40(6):218−221. [MA R, LIN Y, TENG C Q, et al. In vitro antioxidant activity of tea tree flowers[J]. Food Industry,2019,40(6):218−221.

    MA R, LIN Y, TENG C Q, et al. In vitro antioxidant activity of tea tree flowers[J]. Food Industry, 2019, 40(6): 218-221.
    [20]
    郭嘉凤, 田双红, 易晓芹, 等. 不同茶树品种鲜叶固定样的体外抗氧化活性[J]. 现代食品科技,2018,226(6):115−121. [GUO J F, TIAN S H, YI X Q, et al. Antioxidant activity in vitro of fresh leaves of different tea varieties[J]. Modern Food Science and Technology,2018,226(6):115−121.

    GUO J F, TIAN S H, YI X Q, et al. Antioxidant activity in vitro of fresh leaves of different tea varieties[J]. Modern Food Science and Technology, 2018, 226(6): 115-121.
    [21]
    全国茶叶标准化技术委员会. 茶 磨碎试样的制定及干物质含量的测定: GB/T 8303-2013[S]. 北京: 中国标准出版社, 2013

    National Technical Committee for Tea Standardization. Preparation of ground tea samples and determination of dry matter content: GB/T 8303-2013[S]. Beijing: China Standards Press, 2013.
    [22]
    全国茶叶标准化技术委员会. GB/T 8305-2013茶 水浸出物测定[S]. 北京: 中国标准出版社, 2013

    National Technical Committee for Tea Standardization. GB/T 8305-2013 Determination of tea extract[S]. Beijing: China Standards Press, 2013.
    [23]
    全国茶叶标准化技术委员会. GB/T 8314-2013 茶 游离氨基酸总量的测定[S]. 北京: 中国标准出版社, 2013

    National Technical Committee for Tea Standardization. GB/T 8314-2013 Determination of total free amino acids in tea[S]. Beijing: China Standard Press, 2013.
    [24]
    全国茶叶标准化技术委员会. GB/T 8313-2018 茶叶中茶多酚和儿茶素类含量的检测方法[S]. 北京: 中国标准出版社, 2018

    National Technical Committee for Tea Standardization. GB/T 8313-2018 Detection method of tea polyphenols and catechins in tea[S]. Beijing: China Standards Press, 2018.
    [25]
    李远华. 茶学综合实验[M]. 北京: 中国轻工业出版社, 2018

    LI Y H. Tea science comprehensive experiment[M]. Beijing: China Light Industry Press, 2018.
    [26]
    赖幸菲, 孙世利, 李裕南, 等. 金萱品种夏暑茶类的生化成分分析及其抗氧化活性研究[J]. 食品工业科技,2015,36(21):73−77,82. [LAI X F, SUN S L, LI Y N, et al. Biochemical composition analysis and antioxidant activity of Jinxuan variety summer summer tea[J]. Food Industry Science and Technology,2015,36(21):73−77,82.

    LAI X F, SUN S L, LI Y N, et al. Biochemical composition analysis and antioxidant activity of Jinxuan variety summer summer tea[J]. Food Industry Science and Technology, 2015, 36(21): 73-77, 82.
    [27]
    全国茶叶标准化技术委员会. GB/T 22111-2008 地理标志产品 普洱茶[S]. 北京: 中国标准出版社, 2008

    National Technical Committee for Tea Standardization. GB/T 22111-2008 Geographical indication products pu'er tea[S]. Beijing: China Standards Press, 2008.
    [28]
    黄阿根, 董瑞建, 韦红. 茶树花活性成分的分析与鉴定[J]. 食品科学,2007(7):400−403. [HUANG A G, DONG R J, WEI H. Analysis and identification of active ingredients in tea tree flowers[J]. Food Science,2007(7):400−403. doi: 10.3321/j.issn:1002-6630.2007.07.095

    HUANG A G, DONG R J, WEI H. Analysis and identification of active ingredients in tea tree flowers[J]. Food Science, 2007(7): 400-403. doi: 10.3321/j.issn:1002-6630.2007.07.095
    [29]
    石兴云, 刘伊琦, 念波, 等. 云南茶树花茶加工工艺与化学成分研究[J]. 保鲜与加工,2019,19(3):70−77. [SHI X Y, LIU Y Q, NIAN B, et al. Research on processing technology and chemical composition of Yunnan tea tree scented tea[J]. Preservation and Processing,2019,19(3):70−77. doi: 10.3969/j.issn.1009-6221.2019.03.011

    SHI X Y, LIU Y Q, NIAN B, et al. Research on processing technology and chemical composition of Yunnan tea tree scented tea[J]. Preservation and Processing, 2019, 19(3): 70-77. doi: 10.3969/j.issn.1009-6221.2019.03.011
    [30]
    邓宇杰, 罗理勇, 田小军, 等. 干燥方式对不同品种茶树花主要生化成分的影响[J]. 食品工业科技,2017(7):356−360,364. [DENG Y J, LUO L Y, TIAN X J, et al. The effects of drying methods on the main biochemical components of different varieties of tea flowers[J]. Science and Technology of Food Industry,2017(7):356−360,364.

    DENG Y J, LUO L Y, TIAN X J, et al. The effects of drying methods on the main biochemical components of different varieties of tea flowers[J]. Science and Technology of Food Industry, 2017(7): 356-360, 364.
    [31]
    郭志龙, 马治华, 张虹, 等. 不同甜叶菊品种叶中绿原酸类成分的比较研究[J]. 广西植物,2020,40(5):696−705. [GUO Z L, MA Z H, ZHANG H, et al. Comparison of chlorogenic acids in leaves of different stevia varieties[J]. Guangxi Plants,2020,40(5):696−705. doi: 10.11931/guihaia.gxzw201901024

    GUO Z L, MA Z H, ZHANG H, et al. Comparison of chlorogenic acids in leaves of different stevia varieties[J]. Guangxi Plants, 2020, 40(5): 696-705. doi: 10.11931/guihaia.gxzw201901024
    [32]
    CAMFIELD D A, STOUGH C, FARRIMOND J, et al. Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: A systematic review and meta‐analysis[J]. Nutrition Reviews,2014,72(8):507−522. doi: 10.1111/nure.12120
    [33]
    AHMAD A, KALEEM M, AHMED Z, et al. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—a review[J]. Food Research International,2015,77(2):221−235.
    [34]
    DU G, ZHANG Z, WEN X, et al. Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea[J]. Nutrients,2012,4(11):1679−1691. doi: 10.3390/nu4111679
    [35]
    YANG Z Y, XU Y, JIE G L, et al. Study on the antioxidant activity of tea flowers (Camellia sinensis)[J]. Asia Pacific Journal of Clinical Nutrition,2007,16(1):148−152.
    [36]
    黄艳, 商虎, 朱嘉威, 等. 加工工艺对茶树花品质及抗氧化活性的影响[J]. 食品科学,2020,41(11):165−170. [HUANG Y, SHANG H, ZHU J W, et al. Effects of processing technology on tea flower quality and antioxidant activity[J]. Food Science,2020,41(11):165−170. doi: 10.7506/spkx1002-6630-20190505-018

    HUANG Y, SHANG H, ZHU J W, et al. Effects of processing technology on tea flower quality and antioxidant activity[J]. Food Science, 2020, 41(11): 165-170. doi: 10.7506/spkx1002-6630-20190505-018
    [37]
    杨家干. 都匀毛尖成分及其部分生理功能研究[D]. 广州: 华南农业大学, 2016

    YANG J G. Research on Duyun Maojian components and some physiological functions[D]. Guangzhou: South China Agricultural University, 2016.
    [38]
    CHEN Z C, MEI X, JIN Y X, et al. Optimisation of supercritical carbon dioxide extraction of essential oil of flowers of tea (Camellia sinensis L.) plants and its antioxidative activity[J]. Journal of the Science of Food and Agriculture,2014,94(2):316−321. doi: 10.1002/jsfa.6260
    [39]
    邓宇杰. 茶树花提取物的抗氧化活性及其对HepG2 细胞的抗增殖活性[D]. 重庆: 西南大学, 2017

    DENG Y J. Antioxidant activity of tea tree flower extract and its antiproliferative activity on HepG2 cells[D]. Chongqing: Southwest University, 2017.
    [40]
    王菲, 王志超, 程小毛, 等. 千家寨野生古茶树对不同海拔的生理响应[J]. 云南农业大学学报,2021,36(3):500−506. [WANG F, WANG Z C, CHENG X M, et al. Physiological response of qianjiazhai wild ancient tea trees to different altitudes[J]. Journal of Yunnan Agricultural University,2021,36(3):500−506.

    WANG F, WANG Z C, CHENG X M, et al. Physiological response of qianjiazhai wild ancient tea trees to different altitudes[J]. Journal of Yunnan Agricultural University, 2021, 36(3): 500-506.
    [41]
    龙宁. 甜叶菊抗氧化能力测定技术研究和种质资源筛选[D]. 杭州: 浙江大学, 2014

    LONG N. Research on the determination technology of stevia’s antioxidant capacity and selection of germplasm resources[D]. Hangzhou: Zhejiang University, 2014.
    [42]
    白亚欣, 侯彩云. 几种茶叶生化成分及其抗氧化活性分析[J]. 中国食物与营养,2020,26(1):31−36. [BAI Y X, HOU C Y. Analysis of several tea biochemical components and their antioxidant activities[J]. Chinese Food and Nutrition,2020,26(1):31−36.

    BAI Y X, HOU C Y. Analysis of several tea biochemical components and their antioxidant activities[J]. Chinese Food and Nutrition, 2020, 26(1): 31-36.
  • Cited by

    Periodical cited type(1)

    1. 刘曼丽,钟金锋,刘雄,覃小丽. 牛血清白蛋白与辛烯基琥珀酸淀粉酯糖基化产物改善谷维素的理化性质和生物可及度. 食品与发酵工业. 2022(24): 166-171 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (194) PDF downloads (12) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return