Citation: | ZHAO Dianbo, WANG Shaodan, ZHENG Kaixi, et al. Synergistic Inactivation Effects and Mechanisms of Plasma-Activated Water Combined with Phenyllactic Acid against Escherichia coli O157:H7[J]. Science and Technology of Food Industry, 2022, 43(14): 138−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110116. |
[1] |
康超娣, 相启森, 刘骁, 等. 等离子体活化水在食品工业中应用研究进展[J]. 食品工业科技,2018,39(7):348−352. [KANG C D, XIANG Q S, LIU X, et al. A review of application of plasma-activated water in food industry[J]. Science and Technology of Food Industry,2018,39(7):348−352.
KANG C D, XIANG Q S, LIU X, et al. A review of application of plasma-activated water in food industry[J]. Science and Technology of Food Industry, 2018, 39(7): 348–352.
|
[2] |
LAURITA R, GOZZI G, TAPPI S, et al. Effect of plasma activated water (PAW) on rocket leaves decontamination and nutritional value[J]. Innovative Food Science & Emerging Technologies,2021,73:102805.
|
[3] |
ZHAO Y M, OLIVEIRA M, BURGESS C M, et al. Combined effects of ultrasound, plasma–activated water, and peracetic acid on decontamination of mackerel fillets[J]. LWT-Food Science and Technology,2021,150:111957. doi: 10.1016/j.lwt.2021.111957
|
[4] |
ROYINTARAT T, CHOI E H, BOONYAWAN D, et al. Chemical–free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin[J]. Scientific Reports,2020,10(1):1559. doi: 10.1038/s41598-020-58199-w
|
[5] |
CHOI E J, PARK H W, KIM S B, et al. Sequential application of plasma–activated water and mild heating improves microbiological quality of ready–to–use shredded salted kimchi cabbage (Brassica pekinensis L.)[J]. Food Control,2019,98:501−509. doi: 10.1016/j.foodcont.2018.12.007
|
[6] |
LIU X, LI Y F, WANG S D, et al. Synergistic antimicrobial activity of plasma-activated water and propylparaben: Mechanism and applications for fresh produce sanitation[J]. LWT-Food Science and Technology,2021,146:111447. doi: 10.1016/j.lwt.2021.111447
|
[7] |
LIU X, LI Y F, ZHANG R, et al. Inactivation effects and mechanisms of plasma-activated water combined with sodium laureth sulfate (SLES) against Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology,2021,105(7):2855−2865. doi: 10.1007/s00253-021-11227-9
|
[8] |
邓廷山, 武国干, 孙宇, 等. 苯乳酸生物合成的研究进展[J]. 中国生物工程杂志,2020,40(9):62−68. [DENG T S, WU G G, SUN Y, et al. Advances in biosynthesis of phenyllactic acid[J]. China Biotechnology,2020,40(9):62−68.
DENG T S, WU G G, SUN Y, et al. Advances in biosynthesis of phenyllactic acid[J]. China Biotechnology, 2020, 40(9): 62–68.
|
[9] |
YOO J A, MIN-HO Y, LEE J L, et al. Antifungal effect of phenyllactic acid produced by Lactobacillus casei isolated from button mushroom[J]. Journal of Mushrooms,2016,14(4):162−167. doi: 10.14480/JM.2016.14.4.162
|
[10] |
MU W M, YU S H, ZHU L J, et al. Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound[J]. Applied Microbiology and Biotechnology,2012,95(5):1155−1163. doi: 10.1007/s00253-012-4269-8
|
[11] |
RAJANIKAR R V, NATARAJ B H, NAITHANI H, et al. Phenyllactic acid: A green compound for food biopreservation[J]. Food Control,2021:108184.
|
[12] |
ZHANG R, MA Y F, WU D, et al. Synergistic inactivation mechanism of combined plasma-activated water and mild heat against Saccharomyces cerevisiae[J]. Journal of Food Protection,2020,83(8):1307−1314. doi: 10.4315/JFP-20-065
|
[13] |
刘骁, 李云菲, 王雯雯, 等. 紫外发光二极管对P. deceptionensis CM2杀菌作用及机制[J]. 食品工业,2021,42(8):150−154. [LIU X, LI Y F, WANG W W, et al. Effect of ultraviolet-C light-emitting diodes on P. deceptionensis CM2: Inactivation efficiency and mechanism[J]. Food Industry,2021,42(8):150−154.
LIU X, LI Y F, WANG W W, et al. Effect of ultraviolet-C light-emitting diodes on P. deceptionensis CM2: Inactivation efficiency and mechanism[J]. Food Industry, 2021, 42(8): 150–154.
|
[14] |
SANNASIDDAPPA T H, LUND P A, CLARKE S R. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus[J]. Frontiers in Microbiology,2017,8:1581. doi: 10.3389/fmicb.2017.01581
|
[15] |
XING K, XING Y, LIU Y F, et al. Fungicidal effect of chitosan via inducing membrane disturbance against Ceratocystis fimbriata[J]. Carbohydrate Polymers,2018,192:95−103. doi: 10.1016/j.carbpol.2018.03.053
|
[16] |
相启森, 张嵘, 杜桂红, 等. 等离子体活化水对沙门氏菌的灭活作用及机制研究[J]. 食品工业科技,2021,42(8):138−143. [XIANG Q S, ZHANG R, DU G H, et al. Inactivation effects and mechanisms of plasma-activated water against S. typhimurium[J]. Science and Technology of Food Industry,2021,42(8):138−143.
XIANG Q S, ZHANG R, DU G H, et al. Inactivation effects and mechanisms of plasma-activated water against S. typhimurium[J]. Science and Technology of Food Industry, 2021, 42(8): 138−143.
|
[17] |
NING Y W, YAN A H, YANG K, et al. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms[J]. Food Chemistry,2017,228:533−540. doi: 10.1016/j.foodchem.2017.01.112
|
[18] |
LIU F, TANG C, WANG D B, et al. The synergistic effects of phenyllactic acid and slightly acid electrolyzed water to effectively inactivate Klebsiella oxytoca planktonic and biofilm cells[J]. Food Control,2021,125:107804. doi: 10.1016/j.foodcont.2020.107804
|
[19] |
宁亚维, 付浴男, 何建卓, 等. 苯乳酸和醋酸联用对大肠杆菌的抑菌机理[J]. 食品科学,2021,42(3):77−84. [NING Y W, FU Y N, HE J Z, et al. Antibacterial mechanism of phenyllactic acid combined with acetic acid on Escherichia coli[J]. Food Science,2021,42(3):77−84. doi: 10.7506/spkx1002-6630-20200128-285
NING Y W, FU Y N, HE J Z, et al. Antibacterial mechanism of phenyllactic acid combined with acetic acid on Escherichia coli[J]. Food Science, 2021, 42(3): 77–84. doi: 10.7506/spkx1002-6630-20200128-285
|
[20] |
KONINGS W N, ALBERS S V, KONING S, et al. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments[J]. Antonie Van Leeuwenhoek,2002,81:61−72. doi: 10.1023/A:1020573408652
|
[21] |
康世墨. 乳糖酸对耐甲氧西林金黄色葡萄球菌抑菌机理的研究[D]. 沈阳: 沈阳农业大学, 2020.
KANG S M. Study on the antibacterial mechanism of lactobionic acid against methicillin-resistant Staphylococcus aureus[D]. Shenyang: Shenyang Agricultural University, 2020.
|
[22] |
SORRENTINO E, TREMONTE P, SUCCI M, et al. Detection of antilisterial activity of 3-phenyllactic acid using Listeria innocua as a model[J]. Frontiers in Microbiology,2018,9:1373. doi: 10.3389/fmicb.2018.01373
|
[23] |
BENARROCH J M, ASALLY M. The microbiologist's guide to membrane potential dynamics[J]. Trends in Microbiology,2020,28(4):304−314. doi: 10.1016/j.tim.2019.12.008
|
[24] |
WANG X Y, TIAN L, FU J P, et al. Evaluation of the membrane damage mechanism of thymol against Bacillus cereus and its application in the preservation of skim milk[J]. Food Control,2021,131:108435. doi: 10.1016/j.foodcont.2021.108435
|
[25] |
WANG F T, WU H H, JIN P P, et al. Antimicrobial activity of phenyllactic acid against Enterococcus faecalis and its effect on cell membrane[J]. Foodborne Pathogens and Disease,2018,15(10):645−652. doi: 10.1089/fpd.2018.2470
|
[26] |
ZHOU R W, ZHOU R S, PRASAD K, et al. Cold atmospheric plasma activated water as a prospective disinfectant: The crucial role of peroxynitrite[J]. Green Chemistry,2018,20(23):5276−5284. doi: 10.1039/C8GC02800A
|
[27] |
HOU C Y, LAI Y C, HSIAO C P, et al. Antibacterial activity and the physicochemical characteristics of plasma activated water on tomato surfaces[J]. LWT-Food Science and Technology,2021,149:111879. doi: 10.1016/j.lwt.2021.111879
|
[28] |
HERIANTO S, HOU C Y, LIN C M, et al. Nonthermal plasma-activated water: A comprehensive review of this new tool for enhanced food safety and quality[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(1):583−626. doi: 10.1111/1541-4337.12667
|
[29] |
ZHAO Y M, OJHA S, BURGESS C M, et al. Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state[J]. Journal of Applied Microbiology,2020,129(5):1248−1260. doi: 10.1111/jam.14677
|
[30] |
LIAO X Y, CULLEN P J, MUHAMMAD A I, et al. Cold plasma-based hurdle interventions: New strategies for improving food safety[J]. Food Engineering Reviews,2020,12(3):321−332. doi: 10.1007/s12393-020-09222-3
|
1. |
孟春杨,吴玉田,彭蕾,钟雪,邹璐,刘文政,周贻兵. 超高效液相色谱-串联质谱法检测卤肉中4种β-受体激动剂残留. 食品工业科技. 2024(01): 277-283 .
![]() | |
2. |
许晶晶,邵彪,管燕淼,李玲玉,钱佳燕. 市售牛肉中瘦肉精残留检测及风险评估. 福建分析测试. 2024(02): 7-15 .
![]() | |
3. |
郑梓扬. 一站式QuEChERS法结合UPLC-MS/MS测定动物性食品中18种β-受体激动剂残留. 食品安全导刊. 2024(16): 101-107 .
![]() | |
4. |
范力欣,杨丽琼,任晓伟,杨层层,孟志娟,范素芳. PRi ME MCX固相萃取柱结合超高效液相色谱-串联质谱法测定乳及乳制品中25种β-受体激动剂. 乳业科学与技术. 2024(03): 16-25 .
![]() | |
5. |
莫紫梅,王海波,袁光蔚,叶金,吴宇,伍先绍. 六堡茶中多种真菌毒素测定前处理方法的优化. 中国食品添加剂. 2023(02): 255-267 .
![]() | |
6. |
龚波,王峻,董文婷,陈向丹,李菁菁,金秀娥,周平. 超高效液相色谱-串联质谱法测定猪尿中7种α_2-受体激动剂残留. 中国兽药杂志. 2023(07): 16-24 .
![]() | |
7. |
董洁琼,肖琎,周鑫,李宁,王雪松,康俊杰. 超高效液相色谱-串联质谱测定畜肉中14种β-受体激动剂. 色谱. 2023(12): 1106-1114 .
![]() | |
8. |
刘学芝,赵英莲,马跃,董诗诗,王彬,张洋. 超高效液相色谱-串联质谱法测定猪肉、鸡蛋、牛奶中9种食源性兴奋剂类药物残留. 色谱. 2022(02): 148-155 .
![]() | |
9. |
王溪,凌映茹,张昊,吉文亮. 超高效液相色谱-串联质谱法检测婴儿米粉中11种有机磷阻燃剂. 食品工业科技. 2022(17): 298-305 .
![]() | |
10. |
王莉莉,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛. 通过式固相萃取柱结合QuEChERS前处理技术-液相色谱串联质谱法快速测定熟肉食品中4种β_2-受体激动剂残留. 食品安全质量检测学报. 2021(09): 3771-3776 .
![]() | |
11. |
王莉莉,陈雪营,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛,闫薪竹. 基质分离固相萃取-液相色谱-串联质谱法快速测定牛肉中4种β_2-受体激动剂类兽药残留. 食品安全质量检测学报. 2021(11): 4647-4653 .
![]() |