ZHAO Dianbo, WANG Shaodan, ZHENG Kaixi, et al. Synergistic Inactivation Effects and Mechanisms of Plasma-Activated Water Combined with Phenyllactic Acid against Escherichia coli O157:H7[J]. Science and Technology of Food Industry, 2022, 43(14): 138−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110116.
Citation: ZHAO Dianbo, WANG Shaodan, ZHENG Kaixi, et al. Synergistic Inactivation Effects and Mechanisms of Plasma-Activated Water Combined with Phenyllactic Acid against Escherichia coli O157:H7[J]. Science and Technology of Food Industry, 2022, 43(14): 138−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110116.

Synergistic Inactivation Effects and Mechanisms of Plasma-Activated Water Combined with Phenyllactic Acid against Escherichia coli O157:H7

More Information
  • Received Date: November 11, 2021
  • Available Online: May 08, 2022
  • The present study aimed to elucidate the antibacterial effect and underlying mechanisms of plasma-activated water (PAW) combined with phenyllactic acid (PLA) against Escherichia coli O157:H7. The inactivation effects of PAW and PLA on E. coli O157:H7 and their effect on cell morphology, cell membrane integrity and intracellular reactive oxygen species (ROS) level were investigated by plate counting, scanning electron microscopy and fluorescence staining. The results showed that the population of E. coli O157:H7 did not change significantly after PLA treatment at 0.125~1.0 mg/mL for 8 min (P>0.05). E. coli O157:H7 decreased by 5.65 lg CFU/mL after PAW treatment combined with 1.0 mg/mL of PLA for 8 min, which was significantly higher than the 1.06 lg CFU/mL of PAW alone (P<0.05). As shown by the scanning electron microscope images, obvious changes in the morphology of E. coli O157: H7 cells were observed after PAW treatment combined with PLA. After the co-treatment of PAW and PLA (1.0 mg/mL) for 8 min, the extracellular protein content, cell membrane potential and intracellular ROS level of E. coli O157:H7 increased by 25.6-, 0.75- and 9.53-fold (P<0.05), respectively, as compared with the control cells. In summary, PAW combined with PLA could effectively inactivate E. coli O157:H7 cells, which might be associated with membrane disruption and oxidative damages. The results could provide a scientific basis for the application of PAW and PLA in food sterilization and preservation.
  • [1]
    康超娣, 相启森, 刘骁, 等. 等离子体活化水在食品工业中应用研究进展[J]. 食品工业科技,2018,39(7):348−352. [KANG C D, XIANG Q S, LIU X, et al. A review of application of plasma-activated water in food industry[J]. Science and Technology of Food Industry,2018,39(7):348−352.

    KANG C D, XIANG Q S, LIU X, et al. A review of application of plasma-activated water in food industry[J]. Science and Technology of Food Industry, 2018, 39(7): 348–352.
    [2]
    LAURITA R, GOZZI G, TAPPI S, et al. Effect of plasma activated water (PAW) on rocket leaves decontamination and nutritional value[J]. Innovative Food Science & Emerging Technologies,2021,73:102805.
    [3]
    ZHAO Y M, OLIVEIRA M, BURGESS C M, et al. Combined effects of ultrasound, plasma–activated water, and peracetic acid on decontamination of mackerel fillets[J]. LWT-Food Science and Technology,2021,150:111957. doi: 10.1016/j.lwt.2021.111957
    [4]
    ROYINTARAT T, CHOI E H, BOONYAWAN D, et al. Chemical–free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin[J]. Scientific Reports,2020,10(1):1559. doi: 10.1038/s41598-020-58199-w
    [5]
    CHOI E J, PARK H W, KIM S B, et al. Sequential application of plasma–activated water and mild heating improves microbiological quality of ready–to–use shredded salted kimchi cabbage (Brassica pekinensis L.)[J]. Food Control,2019,98:501−509. doi: 10.1016/j.foodcont.2018.12.007
    [6]
    LIU X, LI Y F, WANG S D, et al. Synergistic antimicrobial activity of plasma-activated water and propylparaben: Mechanism and applications for fresh produce sanitation[J]. LWT-Food Science and Technology,2021,146:111447. doi: 10.1016/j.lwt.2021.111447
    [7]
    LIU X, LI Y F, ZHANG R, et al. Inactivation effects and mechanisms of plasma-activated water combined with sodium laureth sulfate (SLES) against Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology,2021,105(7):2855−2865. doi: 10.1007/s00253-021-11227-9
    [8]
    邓廷山, 武国干, 孙宇, 等. 苯乳酸生物合成的研究进展[J]. 中国生物工程杂志,2020,40(9):62−68. [DENG T S, WU G G, SUN Y, et al. Advances in biosynthesis of phenyllactic acid[J]. China Biotechnology,2020,40(9):62−68.

    DENG T S, WU G G, SUN Y, et al. Advances in biosynthesis of phenyllactic acid[J]. China Biotechnology, 2020, 40(9): 62–68.
    [9]
    YOO J A, MIN-HO Y, LEE J L, et al. Antifungal effect of phenyllactic acid produced by Lactobacillus casei isolated from button mushroom[J]. Journal of Mushrooms,2016,14(4):162−167. doi: 10.14480/JM.2016.14.4.162
    [10]
    MU W M, YU S H, ZHU L J, et al. Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound[J]. Applied Microbiology and Biotechnology,2012,95(5):1155−1163. doi: 10.1007/s00253-012-4269-8
    [11]
    RAJANIKAR R V, NATARAJ B H, NAITHANI H, et al. Phenyllactic acid: A green compound for food biopreservation[J]. Food Control,2021:108184.
    [12]
    ZHANG R, MA Y F, WU D, et al. Synergistic inactivation mechanism of combined plasma-activated water and mild heat against Saccharomyces cerevisiae[J]. Journal of Food Protection,2020,83(8):1307−1314. doi: 10.4315/JFP-20-065
    [13]
    刘骁, 李云菲, 王雯雯, 等. 紫外发光二极管对P. deceptionensis CM2杀菌作用及机制[J]. 食品工业,2021,42(8):150−154. [LIU X, LI Y F, WANG W W, et al. Effect of ultraviolet-C light-emitting diodes on P. deceptionensis CM2: Inactivation efficiency and mechanism[J]. Food Industry,2021,42(8):150−154.

    LIU X, LI Y F, WANG W W, et al. Effect of ultraviolet-C light-emitting diodes on P. deceptionensis CM2: Inactivation efficiency and mechanism[J]. Food Industry, 2021, 42(8): 150–154.
    [14]
    SANNASIDDAPPA T H, LUND P A, CLARKE S R. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus[J]. Frontiers in Microbiology,2017,8:1581. doi: 10.3389/fmicb.2017.01581
    [15]
    XING K, XING Y, LIU Y F, et al. Fungicidal effect of chitosan via inducing membrane disturbance against Ceratocystis fimbriata[J]. Carbohydrate Polymers,2018,192:95−103. doi: 10.1016/j.carbpol.2018.03.053
    [16]
    相启森, 张嵘, 杜桂红, 等. 等离子体活化水对沙门氏菌的灭活作用及机制研究[J]. 食品工业科技,2021,42(8):138−143. [XIANG Q S, ZHANG R, DU G H, et al. Inactivation effects and mechanisms of plasma-activated water against S. typhimurium[J]. Science and Technology of Food Industry,2021,42(8):138−143.

    XIANG Q S, ZHANG R, DU G H, et al. Inactivation effects and mechanisms of plasma-activated water against S. typhimurium[J]. Science and Technology of Food Industry, 2021, 42(8): 138−143.
    [17]
    NING Y W, YAN A H, YANG K, et al. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms[J]. Food Chemistry,2017,228:533−540. doi: 10.1016/j.foodchem.2017.01.112
    [18]
    LIU F, TANG C, WANG D B, et al. The synergistic effects of phenyllactic acid and slightly acid electrolyzed water to effectively inactivate Klebsiella oxytoca planktonic and biofilm cells[J]. Food Control,2021,125:107804. doi: 10.1016/j.foodcont.2020.107804
    [19]
    宁亚维, 付浴男, 何建卓, 等. 苯乳酸和醋酸联用对大肠杆菌的抑菌机理[J]. 食品科学,2021,42(3):77−84. [NING Y W, FU Y N, HE J Z, et al. Antibacterial mechanism of phenyllactic acid combined with acetic acid on Escherichia coli[J]. Food Science,2021,42(3):77−84. doi: 10.7506/spkx1002-6630-20200128-285

    NING Y W, FU Y N, HE J Z, et al. Antibacterial mechanism of phenyllactic acid combined with acetic acid on Escherichia coli[J]. Food Science, 2021, 42(3): 77–84. doi: 10.7506/spkx1002-6630-20200128-285
    [20]
    KONINGS W N, ALBERS S V, KONING S, et al. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments[J]. Antonie Van Leeuwenhoek,2002,81:61−72. doi: 10.1023/A:1020573408652
    [21]
    康世墨. 乳糖酸对耐甲氧西林金黄色葡萄球菌抑菌机理的研究[D]. 沈阳: 沈阳农业大学, 2020.

    KANG S M. Study on the antibacterial mechanism of lactobionic acid against methicillin-resistant Staphylococcus aureus[D]. Shenyang: Shenyang Agricultural University, 2020.
    [22]
    SORRENTINO E, TREMONTE P, SUCCI M, et al. Detection of antilisterial activity of 3-phenyllactic acid using Listeria innocua as a model[J]. Frontiers in Microbiology,2018,9:1373. doi: 10.3389/fmicb.2018.01373
    [23]
    BENARROCH J M, ASALLY M. The microbiologist's guide to membrane potential dynamics[J]. Trends in Microbiology,2020,28(4):304−314. doi: 10.1016/j.tim.2019.12.008
    [24]
    WANG X Y, TIAN L, FU J P, et al. Evaluation of the membrane damage mechanism of thymol against Bacillus cereus and its application in the preservation of skim milk[J]. Food Control,2021,131:108435. doi: 10.1016/j.foodcont.2021.108435
    [25]
    WANG F T, WU H H, JIN P P, et al. Antimicrobial activity of phenyllactic acid against Enterococcus faecalis and its effect on cell membrane[J]. Foodborne Pathogens and Disease,2018,15(10):645−652. doi: 10.1089/fpd.2018.2470
    [26]
    ZHOU R W, ZHOU R S, PRASAD K, et al. Cold atmospheric plasma activated water as a prospective disinfectant: The crucial role of peroxynitrite[J]. Green Chemistry,2018,20(23):5276−5284. doi: 10.1039/C8GC02800A
    [27]
    HOU C Y, LAI Y C, HSIAO C P, et al. Antibacterial activity and the physicochemical characteristics of plasma activated water on tomato surfaces[J]. LWT-Food Science and Technology,2021,149:111879. doi: 10.1016/j.lwt.2021.111879
    [28]
    HERIANTO S, HOU C Y, LIN C M, et al. Nonthermal plasma-activated water: A comprehensive review of this new tool for enhanced food safety and quality[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(1):583−626. doi: 10.1111/1541-4337.12667
    [29]
    ZHAO Y M, OJHA S, BURGESS C M, et al. Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state[J]. Journal of Applied Microbiology,2020,129(5):1248−1260. doi: 10.1111/jam.14677
    [30]
    LIAO X Y, CULLEN P J, MUHAMMAD A I, et al. Cold plasma-based hurdle interventions: New strategies for improving food safety[J]. Food Engineering Reviews,2020,12(3):321−332. doi: 10.1007/s12393-020-09222-3
  • Related Articles

    [1]QIAO Xue, QIAO Yajie, FU Huixin, MENG Xintao, ZHANG Ting. Effect of Low Voltage Electrostatic Field Assisted Thawing on Beef Quality[J]. Science and Technology of Food Industry, 2024, 45(17): 48-56. DOI: 10.13386/j.issn1002-0306.2023090023
    [2]SHEN Haijun, XU Ziang, WANG Wenqi, YU Ting, CAO Zhongwen. Apple Quality Evaluation Based on Entropy Weight Method, Grey Relational Degree Method and Low-field Nuclear Magnetic Resonance Detection[J]. Science and Technology of Food Industry, 2024, 45(1): 231-238. DOI: 10.13386/j.issn1002-0306.2023010032
    [3]LUO Zhenyu, CHEN Xiaoting, LI Yuhan, WANG Ying, SU Jinqiang, YANG Jing, LAN Jiaying, NI Hui, ZHANG Shen, LIN Hetong. Postharvest Water Loss Pattern of Golden Passion Fruit and Its Relationship with Quality Deterioration[J]. Science and Technology of Food Industry, 2023, 44(1): 369-377. DOI: 10.13386/j.issn1002-0306.2022040066
    [4]YU Ming, LIANG Zuanhao, CHEN Haiqiang, LIANG Fengxue, AO Feifei, DENG Jinjie. Water Migration and Quality Change of Prawn Preserved under Controlled Freezing-point Storage Combined with Low Frequency Electric Field Technology[J]. Science and Technology of Food Industry, 2022, 43(19): 372-378. DOI: 10.13386/j.issn1002-0306.2021100109
    [5]SUN Huijuan, LI Min, ZHANG Feiyu, SUN Xi, MA Lizhen, REN Xiaoqing. Effect of Blanching Temperature and Air Frying Time on the Quality of Catfish Skin[J]. Science and Technology of Food Industry, 2022, 43(13): 71-78. DOI: 10.13386/j.issn1002-0306.2021100061
    [6]HUANG Guozhong, WANG Qin, LIU Dongjie. Application of LF-NMR and Its Imaging Technology in the Study of Winter Jujube Storage Process[J]. Science and Technology of Food Industry, 2021, 42(21): 319-324. DOI: 10.13386/j.issn1002-0306.2021020093
    [7]YUAN Yi-ping, LI Jing, MA Yuan, YIN Xiao-cui, ZHANG Xi-jia, CHE Zhen-ming, ZHANG Guang-feng. LF-NMR Combined with Physicochemical Indicators to Analyze the Quality of Vacuum Packed Yak Meat during Cold Storage[J]. Science and Technology of Food Industry, 2019, 40(6): 31-36. DOI: 10.13386/j.issn1002-0306.2019.06.006
    [8]LI Bin, KANG Zhuang-li, GONG Chen, ZHANG Meng-di. The difference qualities of frozen and chilled pork sausage by using low field nuclear magnetic resonance(LF-NMR)[J]. Science and Technology of Food Industry, 2015, (24): 142-144. DOI: 10.13386/j.issn1002-0306.2015.24.022
    [9]ZHAO Ting-ting, WANG Xin, LU Hai-yan, LIU Bao-lin. Quality assessment of oils and fats based on the LF-NMR relaxometry characteristics[J]. Science and Technology of Food Industry, 2014, (12): 58-65. DOI: 10.13386/j.issn1002-0306.2014.12.003
    [10]The quality analysis of frying palm oil based on dielectric constant and low-field nuclear magnetic[J]. Science and Technology of Food Industry, 2012, (15): 74-78. DOI: 10.13386/j.issn1002-0306.2012.15.029
  • Cited by

    Periodical cited type(11)

    1. 孟春杨,吴玉田,彭蕾,钟雪,邹璐,刘文政,周贻兵. 超高效液相色谱-串联质谱法检测卤肉中4种β-受体激动剂残留. 食品工业科技. 2024(01): 277-283 . 本站查看
    2. 许晶晶,邵彪,管燕淼,李玲玉,钱佳燕. 市售牛肉中瘦肉精残留检测及风险评估. 福建分析测试. 2024(02): 7-15 .
    3. 郑梓扬. 一站式QuEChERS法结合UPLC-MS/MS测定动物性食品中18种β-受体激动剂残留. 食品安全导刊. 2024(16): 101-107 .
    4. 范力欣,杨丽琼,任晓伟,杨层层,孟志娟,范素芳. PRi ME MCX固相萃取柱结合超高效液相色谱-串联质谱法测定乳及乳制品中25种β-受体激动剂. 乳业科学与技术. 2024(03): 16-25 .
    5. 莫紫梅,王海波,袁光蔚,叶金,吴宇,伍先绍. 六堡茶中多种真菌毒素测定前处理方法的优化. 中国食品添加剂. 2023(02): 255-267 .
    6. 龚波,王峻,董文婷,陈向丹,李菁菁,金秀娥,周平. 超高效液相色谱-串联质谱法测定猪尿中7种α_2-受体激动剂残留. 中国兽药杂志. 2023(07): 16-24 .
    7. 董洁琼,肖琎,周鑫,李宁,王雪松,康俊杰. 超高效液相色谱-串联质谱测定畜肉中14种β-受体激动剂. 色谱. 2023(12): 1106-1114 .
    8. 刘学芝,赵英莲,马跃,董诗诗,王彬,张洋. 超高效液相色谱-串联质谱法测定猪肉、鸡蛋、牛奶中9种食源性兴奋剂类药物残留. 色谱. 2022(02): 148-155 .
    9. 王溪,凌映茹,张昊,吉文亮. 超高效液相色谱-串联质谱法检测婴儿米粉中11种有机磷阻燃剂. 食品工业科技. 2022(17): 298-305 . 本站查看
    10. 王莉莉,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛. 通过式固相萃取柱结合QuEChERS前处理技术-液相色谱串联质谱法快速测定熟肉食品中4种β_2-受体激动剂残留. 食品安全质量检测学报. 2021(09): 3771-3776 .
    11. 王莉莉,陈雪营,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛,闫薪竹. 基质分离固相萃取-液相色谱-串联质谱法快速测定牛肉中4种β_2-受体激动剂类兽药残留. 食品安全质量检测学报. 2021(11): 4647-4653 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (282) PDF downloads (13) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return