ZHU Linqing, ZENG Mingyong. Extraction and Purification and Heat-induced Fading Mechanism of Synechococcus sp. PCC7002 Phycocyanin[J]. Science and Technology of Food Industry, 2022, 43(16): 32−40. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110096.
Citation: ZHU Linqing, ZENG Mingyong. Extraction and Purification and Heat-induced Fading Mechanism of Synechococcus sp. PCC7002 Phycocyanin[J]. Science and Technology of Food Industry, 2022, 43(16): 32−40. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110096.

Extraction and Purification and Heat-induced Fading Mechanism of Synechococcus sp. PCC7002 Phycocyanin

More Information
  • Received Date: November 09, 2021
  • Available Online: June 05, 2022
  • This paper aimed to study the extraction and purification of phycocyanin from Synechococcus sp. PCC7002 (hereinafter referred to as “Synechococcus”) and its heat-induced fading mechanism. Phycocyanin was extracted and purified through high-pressure homogenization, chitosan flocculation and ammonium sulfate salting out. And its fading mechanism during heat treatment (50 ℃, 60 ℃, 70 ℃, 80 ℃, 90 ℃, 30 min) was studied by color index, UV-Vis spectrum, fluorescence emission spectrum, particle size and potential, FTIR spectrum and SDS-PAGE electrophoresis. The results showed that optimal extraction conditions of phycocyanin were to dissolve algal power in 0.04 mol/L NaCl solution to make the concentration reach 2 mg/mL and homogenize it at 80 MPa for 7 min, and the resulting yield of phycocyanin was 10.5081%±0.0936%. After flocculation by 0.15 mg/mL chitosan and salting out by 50% saturated ammonium sulfate, phycocyanin purity could be increased from 0.6950 ± 0.0043 to 1.9084±0.2621. Further research on thermal-induced fading mechanism of phycocyanin found: Destruction of spatial structure of the apoprotein started from 60 ℃, which led to transformation of natural conformation of phycocyanobilin chromophore maintained by protein backbone and a significant decrease in ultraviolet absorption and characteristic fluorescence of phycocyanin, therefore blue hue of phycocyanin was greatly destroyed. Particle size results indicated that phycocyanin molecules began to aggregate at 60 ℃, while larger aggregates formed at 80 ℃ may lead tetrapyrrole chromophore to be buried in it, deepening fading degree of phycocyanin color. In addition, FTIR spectroscopy and SDS-PAGE indicated that β subunit of phycocyanin was probably damaged more serious than α subunit during heat treatment, and the damaged structure were mainly α-helix. In summary, maintaining structural stability of apoprotein or protein segment near the phycocyanin chromophore was the key factor of keeping phycocyanin tone stable during the heat treatment. This research would provide certain theoretical basis for the study of phycocyanin color protection technology during the heat treatment process.
  • [1]
    康瑞娟, 施定基, 蔡昭铃, 等. 外源基因对聚球藻7002光合作用的影响[C]//青岛: 中国藻类学会第十一次学术讨论会, 2001: 133.

    KANG R J, SHI D J, CAI Z L, et al. Effects of exogenous genes on photosynthesis of Synechococcus sp. PCC 7002[C]// Qingdao: The eleventh academic Symposium of the Chinese algal society, 2001: 133.
    [2]
    郑灵刚. 基于广盐聚球藻Synechococcus sp. PCC7002的启动子比较筛选以及产乙醇载体的构建[D]. 厦门: 厦门大学, 2019.

    ZHENG L G. Comparative selection of promoters and construction of ethanol-producing vectors in the euryhaline cyanobacterium Synechococcus sp. PCC 7002[D]. Xiamen: Xiamen University, 2019.
    [3]
    高风正. 聚球藻7002嗜铁素的发酵与制备工艺研究[D]. 青岛: 中国海洋大学, 2015.

    GAO F Z. Study on the fermentation and preparation of siderophores from Synechococcus sp. PCC 7002[D]. Qingdao: Ocean University of China, 2015.
    [4]
    冯广鑫, 吴浩浩, 曾名湧. 海洋微藻源多聚磷酸盐纳米微粒对炎症性肠病的改善作用及相关机理研究[C]// 北京: 中国食品科学技术学会第十五届年会论文摘要集, 2018: 216−217.

    FENG G X, WU H H, ZENG M Y. Research on the improvement effect of marine microalgae-derived polyphosphate nanoparticles on inflammatory bowel disease and related mechanisms[C]// Beijing: Summary of papers of the 15th Annual Meeting of the Chinese Society for Food Science and Technology, 2018: 216−217.
    [5]
    WANG R, WANG Y H, GUO W, et al. Stability and bioactivity of carotenoids from Synechococcus sp. PCC 7002 in Zein/NaCas/Gum Arabic composite nanoparticles fabricated by pH adjustment and heat treatment antisolvent precipitation[J]. Food Hydrocolloids,2021,117:106663. doi: 10.1016/j.foodhyd.2021.106663
    [6]
    GUO W, ZHU S Q, LI S Y, et al. Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice[J]. International Journal of Biological Macromolecules,2021,182:1371−1383. doi: 10.1016/j.ijbiomac.2021.05.067
    [7]
    徐春明, 李婷, 王英英, 等. 食用蓝色素及其使用现状研究进展[J]. 中国食品添加剂,2014(1):208−214. [XU C M, LI T, WANG Y Y, et al. Research progress of edible blue pigments and its application status[J]. China Food Additives,2014(1):208−214. doi: 10.3969/j.issn.1006-2513.2014.01.028

    [7]XU C M, LI T, WANG Y Y, et al. Research progress of edible blue pigments and its application status[J]. China Food Additives, 2014(1): 208-214. doi: 10.3969/j.issn.1006-2513.2014.01.028
    [8]
    郝帅, 秦玉, 王成涛. 功能食品藻蓝蛋白的生理活性研究进展[J]. 食品与生物技术学报,2017,36(12):1233−1240. [HAO S, QIN Y, WANG C T. Research progress of the physiological activity of functional food phycocyanin[J]. Journal of Food Science and Biotechnology,2017,36(12):1233−1240. doi: 10.3969/j.issn.1673-1689.2017.12.001

    [8]HAO S, QIN Y, WANG C T. Research progress of the physiological activity of functional food phycocyanin[J]. Journal of Food Science and Biotechnology, 2017, 36(12): 1233-1240. doi: 10.3969/j.issn.1673-1689.2017.12.001
    [9]
    LI Y, ZHANG Z, ABBASPOURRAD A. Improved thermal stability of phycocyanin under acidic conditions by forming soluble complexes with polysaccharides[J]. Food Hydrocolloids,2021,119:106852. doi: 10.1016/j.foodhyd.2021.106852
    [10]
    JESPERSEN L, STROMDAHL L D, OLSEN K, et al. Heat and light stability of three natural blue colorants for use in confectionery and beverages[J]. European Food Research and Technology,2005,220(3−4):261−266. doi: 10.1007/s00217-004-1062-7
    [11]
    SU C H, LIU C S, YANG P C, et al. Solid-liquid extraction of phycocyanin from Spirulina platensis: Kinetic modeling of influential factors[J]. Separation and Purification Technology,2014,123:64−68. doi: 10.1016/j.seppur.2013.12.026
    [12]
    郭伟, 高风正, 冯一农, 等. 聚球藻PCC7002营养特性分析[J]. 食品工业科技,2019,40(15):248−253. [GUO W, GAO F Z, FENG Y N, et al. Analysis of nutritional properties of Synechococcus sp. PCC 7002[J]. Science and Technology of Food Industry,2019,40(15):248−253.

    [12]GUO W, GAO F Z, FENG Y N, et al. Analysis of nutritional properties of Synechococcus sp. PCC 7002[J]. Science and Technology of Food Industry, 2019, 40(15): 248-253.
    [13]
    刘立闯, 胡志和, 刘彤, 等. 螺旋藻蛋白提取方法比较研究[J]. 食品科学,2008,29(11):228−233. [LIU L C, HU Z H, LIU T, et al. Comparative study on extraction methods of Spirulina phycobiliprotein[J]. Food Science,2008,29(11):228−233. doi: 10.3321/j.issn:1002-6630.2008.11.050

    [13]LIU L C, HU Z H, LIU T, et al. Comparative study on extraction methods of spirulina phycobiliprotein[J]. Food Science, 2008, 29(11): 228-233. doi: 10.3321/j.issn:1002-6630.2008.11.050
    [14]
    廖晓霞, 张学武. 高效分离纯化藻蓝蛋白新法[J]. 食品工业科技,2011,32(6):273−275,280. [LIAO X X, ZHANG X W. New method for efficient separation and purification of C-phycocyanin[J]. Science and Technology of Food Industry,2011,32(6):273−275,280.

    LIAO X X, ZHANG X W. New method for efficient separation and purification of C-phycocyanin[J]. Science and Technology of Food Industry, 2011, 32(6): 273-275, 280.
    [15]
    于淑坤, 岳思君, 李敏, 等. 钝顶螺旋藻藻蓝蛋白分离纯化[J]. 食品科技,2019,44(5):248−252. [YU S K, YUE S J, LI M, et al. Isolation and purification of C-phycocyanin from Spirulina platensis[J]. Food Science and Technology,2019,44(5):248−252.

    [15]YU S K, YUE S J, LI M, et al. Isolation and purification of C-phycocyanin from Spirulina platensis[J]. Food Science and Technology, 2019, 44(5): 248-252.
    [16]
    ZHANG S, ZHANG Z, DADMOHAMMADI Y, et al. Whey protein improves the stability of C-phycocyanin in acidified conditions during light storage[J]. Food Chemistry,2021,334:128642.
    [17]
    HERRERA A, BOUSSIBA S, NAPOLEONE V, et al. Recovery of C-phycocyanin from the cyanobacterium Spirulina maxima[J]. Journal of Applied Phycology,1989,1:325−331. doi: 10.1007/BF00003469
    [18]
    SONI B, KALAVADIA B, TRIVEDI U, et al. Extraction, purification and characterization of phycocyanin from Oscillatoria quadripunctulata—Isolated from the rocky shores of Bet-Dwarka, Gujarat, India[J]. Process Biochemistry,2006,41(9):2017−2023. doi: 10.1016/j.procbio.2006.04.018
    [19]
    梁英妹, 陈妙莹, 陈清梅, 等. 小球藻食品工艺中的关键技术[J]. 科技创新导报,2018,15(10):247−250. [LIANG Y M, CHEN M Y, CHEN Q M, et al. The key technology in chlorella food technology[J]. Science and Technology Innovation Herald,2018,15(10):247−250.

    [19]LIANG Y M, CHEN M Y, CHEN Q M, et al. The key technology in chlorella food technology[J]. Science and Technology Innovation Herald, 2018, 15(10): 247-250.
    [20]
    TAVANANDI H A, MITTAL R, CHANDRASEKHAR J, et al. Simple and efficient method for extraction of C-phycocyanin from dry biomass of Arthospira platensis[J]. Algal Research,2018,31:239−251. doi: 10.1016/j.algal.2018.02.008
    [21]
    陈裕. 巢湖蓝藻藻蓝蛋白提取的破壁方法研究[D]. 合肥: 合肥工业大学, 2015.

    CHEN Y. Research of brokening methods of phycocyanin extraction from blue algae in Lake Chaohu[D]. Hefei: Hefei University of Technology, 2015.
    [22]
    SUKHINOV D V, GORIN K V, ROMANOV A O, et al. Increased C-phycocyanin extract purity by flocculation of Arthrospira platensis with chitosan[J]. Algal Research,2021,58:102393. doi: 10.1016/j.algal.2021.102393
    [23]
    莫柳达. 螺旋藻中藻蓝蛋白的分离纯化、荧光探针研制及其在快速检测中的应用[D]. 福州: 福州大学, 2018.

    MO L D. Purification of phycocyanin from Spirulina, development of fluorescent probes and its application in rapid detection[D]. Fuzhou: Fuzhou University, 2018.
    [24]
    KUPKA M, SCHEER H. Unfolding of C-phycocyanin followed by loss of non-covalent chromophore-protein interactions: 1. Equilibrium experiments[J]. Biochimica et Biophysica Acta (BBA)- Bioenergetics,2008,1777(1):94−103. doi: 10.1016/j.bbabio.2007.10.009
    [25]
    MARTELLI G, FOLLI C, VISAI L, et al. Thermal stability improvement of blue colorant C-phycocyanin from Spirulina platensis for food industry applications[J]. Process Biochemistry,2014,49(1):154−159. doi: 10.1016/j.procbio.2013.10.008
    [26]
    孙冰玉, 刘琳琳, 石彦国, 等. 大豆亲脂蛋白热诱导解离缔合及自组装纳米颗粒表征[J]. 农业机械学报,2021,52(2):346−354. [SUN B Y, LIU L L, SHI Y G, et al. Characterization of dissociation-association behavior and self-assembly nanoparticles of soybean lipophilic protein by heating induction[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(2):346−354.

    [26]SUN B Y, LIU L L, SHI Y G, et al. Characterization of dissociation-association behavior and self-assembly nanoparticles of soybean lipophilic protein by heating induction[J]. Transactions of the Chinese Society for Agricultural Machinery[J], 2021, 52(02): 346-354.
    [27]
    MACCOLL R. Cyanobacterial phycobilisomes[J]. Journal of Structural Biology,1998,124(2-3):311−334. doi: 10.1006/jsbi.1998.4062
    [28]
    FALKEBORG M F, RODA-SERRAT M C, BURNAES K L, et al. Stabilising phycocyanin by anionic micelles[J]. Food Chemistry,2018,239:771−780. doi: 10.1016/j.foodchem.2017.07.007
    [29]
    BÖCKER L, HOSTETTLER T, DIENER M, et al. Time-temperature-resolved functional and structural changes of phycocyanin extracted from Arthrospira platensis/Spirulina[J]. Food Chemistry,2020,316:126374. doi: 10.1016/j.foodchem.2020.126374
    [30]
    ROYER C A. Probing protein folding and conformational transitions with fluorescence[J]. Chemical Reviews,2006,106(5):1769−1784. doi: 10.1021/cr0404390
    [31]
    GHISAIDOOBE A B T, CHUNG S J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on förster resonance energy transfer techniques[J]. International Journal of Molecular Sciences,2014,15(12):22518−22538. doi: 10.3390/ijms151222518
    [32]
    梁霄, 王成华, 卢鑫, 等. 钝顶螺旋藻C-藻蓝蛋白的稳定性和荧光特性[J]. 现代食品科技,2020,36(6):89−96. [LIANG X, WANG C H, LU X, et al. Stability and fluorescence characteristics of C-phycocyanin in Spirulina platensis[J]. Modern Food Science and Technology,2020,36(6):89−96.

    [32]LIANG X, WANG C H, LU X, et al. Stability and fluorescence characteristics of C-phycocyanin in Spirulina platensis[J]. Modern Food Science and Technology, 2020, 36(6): 89-96.
    [33]
    ZHANG Z, CHO S, DADMOHAMMADI Y, et al. Improvement of the storage stability of C-phycocyanin in beverages by high-pressure processing[J]. Food Hydrocolloids,2021,110:106055. doi: 10.1016/j.foodhyd.2020.106055
    [34]
    ZHANG Z, LI Y, ABBASPOURRAD A. Improvement of the colloidal stability of phycocyanin in acidified conditions using whey protein-phycocyanin interactions[J]. Food Hydrocolloids,2020,105:105747. doi: 10.1016/j.foodhyd.2020.105747
    [35]
    邹蕊矫. 基于藻蓝蛋白的薄膜制备及光电特性研究[D]. 成都: 电子科技大学, 2016.

    ZOU R J. Study on preparation and optoelectronic properties of phycocyanin-based thin films[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
    [36]
    ZHENG J B, GAO Q, TANG C H, et al. Heteroprotein complex formation of soy protein isolate and lactoferrin: Thermodynamic formation mechanism and morphologic structure[J]. Food Hydrocolloids,2020,100:105415. doi: 10.1016/j.foodhyd.2019.105415
    [37]
    FINKELSTEIN A V, PTITSYN O B. Protein physics[M]. Se ed. Amsterdam: Academic Press, 2016: 39−50.
    [38]
    李思梦, 高风正, 曾名湧. 聚球藻7002藻蓝蛋白的分离纯化研究[J]. 食品工业科技,2016,37(23):96−102. [LI S M, GAO F Z, ZENG M Y. Study on extraction and purification of C-phycocyanin in Synechococcus sp. PCC 7002[J]. Science and Technology of Food Industry,2016,37(23):96−102.

    [38]LI S M, GAO F Z, ZENG M Y. Study on extraction and purification of C-phycocyanin in Synechococcus sp. PCC 7002[J]. Science and Technology of Food Industry, 2016, 37(23): 96-102.
    [39]
    姜国庆, 闫秋丽, 李东, 等. 螺旋藻中藻蓝蛋白提取、纯化及稳态化研究进展[J]. 食品安全质量检测学报,2021,12(6):2332−2338. [JIANG G Q, YAN Q L, LI D, et al. Research progress on separation, purification and stabilization of phycocyanin from Spirulina[J]. Journal of Safety & Quality,2021,12(6):2332−2338.

    [39]JIANG G Q, YAN Q L, LI D, et al. Research progress on separation, purification and stabilization of phycocyanin from Spirulina[J]. Journal of Safety & Quality, 2021, 12(6): 2332-2338.
  • Cited by

    Periodical cited type(10)

    1. 宋永贵,陈运丽,苏丹,李前民,李惠珍,艾志福,杨明,朱根华,陈丽玲. 龙骨-牡蛎通过调节肠道微生态增强柴胡加龙骨牡蛎汤的抗抑郁效应. 中成药. 2025(02): 625-633 .
    2. 崔雨婷,张方圆,许伟明,李子贇,胡镜清. 基于肠道菌群与冠心病的关系探讨“阴火”科学内涵. 世界中医药. 2024(09): 1279-1285 .
    3. 叶清珠,王苗苗. 植物抗菌色素在抗菌纺织品中的应用. 上海纺织科技. 2024(07): 8-11+17 .
    4. 尹东,杜丽坤,徐洪涛,任那,张天昊. 基于肠道菌群探析中医药治疗肥胖的研究进展. 西部中医药. 2024(09): 111-114 .
    5. 王其龙,杨景森,黄凯勇,朱翠. 小檗碱调控动物肠道菌群稳态的研究进展. 中国畜牧杂志. 2022(02): 23-26+31 .
    6. 罗晓璐,李丽娜,黎京荣,彭啸峰,吴鹏,朱翠. 饲喂有抗或无抗饲粮的黄羽肉鸡在不同日龄下肠道菌群的变化. 广东畜牧兽医科技. 2022(01): 6-13 .
    7. 余佳,高欣悦,付凤萍,吴建英,余琳,陈红英. 半仿生-比色法测定三黄泻心汤中总生物碱的溶出量. 湖北农业科学. 2022(03): 140-143 .
    8. 柯群华,彭晶,王胜义. 中药与肠道菌群及其代谢相关研究进展. 中兽医医药杂志. 2022(02): 35-40 .
    9. 刘良浩,蒋志滨,于海洋,吴志斌,李泠君,唐甜,高洁. 黄连素缓解肠易激综合征作用机制的研究进展. 中国病理生理杂志. 2022(05): 944-948 .
    10. 姚广丰,张奇,张楠,隋玲玲,刘佳,李威,胡铁军. 盐酸小檗碱相关杂质的合成. 辽宁化工. 2022(06): 763-765 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (301) PDF downloads (27) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return