MA Xinyue, LIU Mingyu, LI Rong, et al. Research Progress of Animal-derived Hypoglycemic Peptides[J]. Science and Technology of Food Industry, 2022, 43(22): 438−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110003.
Citation: MA Xinyue, LIU Mingyu, LI Rong, et al. Research Progress of Animal-derived Hypoglycemic Peptides[J]. Science and Technology of Food Industry, 2022, 43(22): 438−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110003.

Research Progress of Animal-derived Hypoglycemic Peptides

More Information
  • Received Date: November 01, 2021
  • Available Online: September 12, 2022
  • Some food-derived active peptides have significant hypoglycemic effects and have the potential to be developed into functional foods, which has attracted attention worldwide. Among them, animal-derived active peptides in food protein hydrolysates have hypoglycemic properties, and their potential mechanisms include inhibition of α-glucosidase or dipeptidyl peptidase-4 (DPP-4). In this paper, the preparation method, the mechanism of action and the evaluation method of the hypoglycemic effect of animal-derived hypoglycemic peptides are introduced, and antiglycemic peptides derived from animal foods such as livestock and poultry meat, fish, blood, milk and eggs are reviewed, which provides a theoretical basis for the prevention and adjuvant therapy of diabetes and the development of related functional foods.
  • [1]
    赵嘉妮, 陈宏, 翁凌, 等. 食源性DPP-IV抑制肽降血糖的作用机制研究进展[J]. 食品工业科技,2021,42(23):447−454. [ZHAO J N, CHEN H, WENG L, et al. Research progress in the mechanism of food-derived DPP-IV inhibitory peptides in lowering blood sugar[J]. Science and Technology of Food Industry,2021,42(23):447−454.
    [2]
    魏兰涛, 马晓君, 郑鑫, 等. 参芪降糖颗粒联合艾塞那肽治疗2型糖尿病的临床研究[J]. 现代药物与临床,2021,36(6):1212−1216. [WEI L T, MA X J, ZHENG X, et al. Clinical study of Shenqi Jiangtang granules combined with exenatide in the treatment of type 2 diabetes[J]. Modern Medicine and Clinics,2021,36(6):1212−1216.
    [3]
    袁丽萍, 张丽玲, 江淼, 等. 2型糖尿病合并感染多器官功能障碍综合征与干扰素调节因子5基因多态性的关联性[J]. 中华医院感染学杂志,2021,31(14):2099−2103. [YUAN L P, ZHANG L L, JIANG M, et al. Association of type 2 diabetes mellitus with multiple organ dysfunction syndrome and interferon regulatory factor 5 gene polymorphism[J]. Chinese Journal of Hospital Infection,2021,31(14):2099−2103.
    [4]
    蔡淑芳, 徐婧语, 吴艳青. 糖尿病介导的周细胞损伤对脊髓损伤后血脊屏障破坏的作用[J]. 中国生物化学与分子生物学报,2022,38(5):555−562. [CAI S F, XU J Y, WU Y Q. The effect of diabetes-mediated pericyte injury on the destruction of blood spine barrier after spinal cord injury[J]. Chinese Journal of Biochemistry and Molecular Biology,2022,38(5):555−562.
    [5]
    陈兰英, 徐添, 杨辉, 等. 糖尿病合并脑卒中患者医院感染风险预测模型构建及经济负担评价[J]. 中华医院感染学杂志,2021,31(14):2104−2108. [CHEN L Y, XU T, YANG H, et al. Construction of nosocomial infection risk prediction model and economic burden evaluation for patients with diabetes complicated with stroke[J]. Chinese Journal of Nosocomial Infection,2021,31(14):2104−2108.
    [6]
    龙小凤, 谭薇, 杨曼. 糖尿病视网膜神经变性机制的研究进展[J]. 国际眼科杂志,2021,21(7):1179−1182. [LONG X F, TAN W, YANG M. Research progress in the mechanism of diabetic retinal neurodegeneration[J]. International Journal of Ophthalmology,2021,21(7):1179−1182.
    [7]
    李梦凡, 厉雪艳, 梁冰. 2型糖尿病患者伴发焦虑抑郁现状及其影响因素分析[J]. 中华全科医学,2021,19(7):1135−1137. [LI M F, LI X Y, LIANG B. Analysis of the status quo of anxiety and depression in type 2 diabetes patients and its influencing factors[J]. Chinese General Practice,2021,19(7):1135−1137.
    [8]
    唐莫宗, 黄堃, 吕国红, 等. 老年初诊2型糖尿病应用门冬胰岛素30联合二甲双胍的临床治疗效果[J]. 空军医学杂志,2020,36(4):325−328. [TANG M Z, HUANG K, LU H, et al. The clinical effect of insulin aspart 30 combined with metformin in the early diagnosis of type 2 diabetes in the elderly[J]. Air Force Medical Journal,2020,36(4):325−328. doi: 10.3969/j.issn.2095-3402.2020.04.016
    [9]
    董宇婷, 王荣春. 降糖肽的发展现状及研究进展[J]. 生物信息学,2018,16(2):83−89. [DONG Y T, WANG R C. Development status and research progress of hypoglycemic peptides[J]. Bioinformatics,2018,16(2):83−89.
    [10]
    金泽彬, 贺颖, 李正祎, 等. 二肽基肽酶-4抑制剂治疗Ⅱ型糖尿病研究进展[J]. 吉林医药学院学报,2021,42(4):308−310. [JIN Z B, HE Y, LI Z Y, et al. Research progress in the treatment of type 2 diabetes with dipeptidyl peptidase-4 inhibitors[J]. Journal of Jilin Medical College,2021,42(4):308−310.
    [11]
    ZATORSKI H, SALAGA M, FICHNA J. Role of glucagon-like peptides in inflammatory bowel diseases-current knowledge and future perspectives[J]. Naunyn-Schmiedebergs Archives of Pharmacology,2019,392(11):1321−1330. doi: 10.1007/s00210-019-01698-z
    [12]
    葛平珍, 周才琼. 食源性活性肽制备与分离纯化的研究进展[J]. 食品工业科技,2014,35(4):363−368. [GE P Z, ZHOU C Q. Research progress in the preparation, separation and purification of food-derived active peptides[J]. Science and Technology of Food Industry,2014,35(4):363−368.
    [13]
    巨芳, 张艳华, 李影, 等. 玉米肽制备的研究进展[J]. 中国食物与营养,2009(8):27−29. [JU F, ZHANG Y H, LI Y, et al. Research progress in the preparation of corn peptides[J]. China Food and Nutrition,2009(8):27−29. doi: 10.3969/j.issn.1006-9577.2009.08.008
    [14]
    江明珠. 超声波预处理辅助酶解制备大豆降糖肽及其作用机理[D]. 镇江: 江苏大学, 2018

    JIANG M Z. Preparation of soybean hypoglycemic peptides assisted by ultrasonic pretreatment and enzymatic hydrolysis and its mechanism of action[D]. Zhenjiang: Jiangsu University, 2018.
    [15]
    AYDIN S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA[J]. Peptides,2015,72:4−15. doi: 10.1016/j.peptides.2015.04.012
    [16]
    KEHINDE B A, SHARMA P. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review[J]. Critical Reviews in Food Science and Nutrition,2020,60(2):322−340. doi: 10.1080/10408398.2018.1528206
    [17]
    HUANG S L, JAO C L, HO K P, et al. Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates[J]. Peptides,2012,35(1):114−121. doi: 10.1016/j.peptides.2012.03.006
    [18]
    ZHU C F, LI G Z, PENG H B, et al. Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus[J]. Applied Physiology, Nutrition, and Metabolism,2010,35(6):797−804. doi: 10.1139/H10-075
    [19]
    曹茂启, 王珏, 罗骏, 等. 分子对接技术在天然产物小分子与靶标蛋白相互作用中的研究进展[J]. 广东化工,2019,46(19):109−130. [CAO M Q, WANG J, LUO J, et al. Research progress of molecular docking technology in the interaction of natural product small molecules with target proteins[J]. Guangdong Chemical Industry,2019,46(19):109−130.
    [20]
    张征立. 固定化酶制备降血糖肽及其生物学活性评价[D]. 镇江: 江苏科技大学, 2019

    ZHANG Z L. Preparation of hypoglycemic peptide by immobilized enzyme and evaluation of its biological activity[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.
    [21]
    KĘSKA P, STADNIK J, BĄK O, et al. Meat proteins as dipeptidyl peptidase IV inhibitors and glucose uptake stimulating peptides for the management of a type 2 diabetes mellitus in silico study[J]. Nutrients,2019,11(10):2537. doi: 10.3390/nu11102537
    [22]
    LAN V T, ITO K, OHNO M, et al. Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor[J]. Food Chemistry,2015,175:66−73. doi: 10.1016/j.foodchem.2014.11.131
    [23]
    SIM M K, WONG Y C, XU X G, et al. Hypoglycemic action of chicken meat extract in type-2 diabetic KKAy mice and GK rats[J]. Bioscience, Biotechnology, and Biochemistry,2009,73(12):2583−2588. doi: 10.1271/bbb.90328
    [24]
    JANNIKE Ø, LISE M, LISE B A, et al. Lean fish intake decreases the risk of type 2 diabetes mellitus in Norwegian women[J]. Current Developments in Nutrition,2019,3(1):P18−036-19.
    [25]
    KETNAWA S, SUWAL S, HUANG J Y, et al. Selective separation and characterisation of dual ACE and DPP-IV inhibitory peptides from rainbow trout (Oncorhynchus mykiss) protein hydrolysates[J]. International Journal of Food Science and Technology,2019,54(4):1062−1073. doi: 10.1111/ijfs.13939
    [26]
    WANG K, YANG X, LOU W, et al. Discovery of dipeptidyl peptidase 4 inhibitory peptides from Largemouth bass (Micropterus salmoides) by a comprehensive approach[J]. Bioorganic Chemistry,2020,105:104432. doi: 10.1016/j.bioorg.2020.104432
    [27]
    ZHANG Y, CHEN R, CHEN X, et al. Dipeptidyl peptidase IV-inhibitory peptides derived from silver carp (Hypophthalmichthys molitrix Val.) proteins[J]. Journal of Agricultural and Food Chemistry,2016,64(4):831−839. doi: 10.1021/acs.jafc.5b05429
    [28]
    NONGONIERMA A B, FITZGERALD R J. An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides[J]. Food Chemistry,2014,165:489−498. doi: 10.1016/j.foodchem.2014.05.090
    [29]
    LOREY S, STÖCKEL-MASCHEK A, FAUST J, et al. Different modes of dipeptidyl peptidase IV (CD26) inhibition by oligopeptides derived from the N-terminus of HIV-1 Tat indicate at least two inhibitor binding sites[J]. European Journal of Biochemistry,2003,270(10):2147−2156. doi: 10.1046/j.1432-1033.2003.03568.x
    [30]
    REIMANN F, WILLIAMS L, DA SILVA XAVIER G, et al. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells[J]. Diabetologia,2004,47(9):1592−1601. doi: 10.1007/s00125-004-1498-0
    [31]
    NONGONIERMA A B, FITZGERALD R J. Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides[J]. Journal of Functional Foods,2013,5(4):1909−1917. doi: 10.1016/j.jff.2013.09.012
    [32]
    HARNEDY P A, PARTHSARATHY V, MCLAUGHLIN C M, et al. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides[J]. Food Research International (Ottawa, Ont.),2018,106:598−606. doi: 10.1016/j.foodres.2018.01.025
    [33]
    HARNEDY P A, MCLAUGHLIN C M, O'KEEFFE M B, et al. Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity[J]. Food Research International (Ottawa, Ont.),2020,131:108989. doi: 10.1016/j.foodres.2020.108989
    [34]
    WANG T Y, HSIEH C H, HUNG C C, et al. Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 stimulators improve glycaemic control in diabetic rats: A comparison between warm- and cold-water fish[J]. Journal of Functional Foods,2015,19:330−340. doi: 10.1016/j.jff.2015.09.037
    [35]
    JENSEN C, DALE H F, HAUSKEN T, et al. Supplementation with cod protein hydrolysate in older adults: A dose range cross-over study[J]. Journal of Nutritional Science,2019,8:e40. doi: 10.1017/jns.2019.37
    [36]
    刘丽君. 驼血抗氧化与降糖活性肽的制备与鉴定[D]. 呼和浩特: 内蒙古农业大学, 2019

    LIU L J. Preparation and identification of anti-oxidant and hypoglycemic peptides from camel blood[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
    [37]
    LAFARGA T, O'CONNOR P, HAYES M. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis[J]. Peptides,2014,59:53−62. doi: 10.1016/j.peptides.2014.07.005
    [38]
    KORISH A A, ABDEL GADER AGM, ALHAIDER A A. Comparison of the hypoglycemic and antithrombotic (anticoagulant) actions of whole bovine and camel milk in streptozotocin-induced diabetes mellitus in rats[J]. Journal of Dairy Science,2020,103(1):30−41. doi: 10.3168/jds.2019-16606
    [39]
    NONGONIERMA A B, CADAMURO C, LE GOUIC A, et al. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation[J]. Food Chemistry,2019,279:70−79. doi: 10.1016/j.foodchem.2018.11.142
    [40]
    甲承立. α-乳白蛋白源DPP-4抑制肽的制备以及结构解析与功能评价[D]. 北京: 中国农业科学院, 2019

    JIA C L. Preparation, structure analysis and functional evaluation of α-lactalbumin-derived DPP-4 inhibitory peptide[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
    [41]
    JAN F, KUMAR S, JHA R. Effect of boiling on the antidiabetic property of enzyme treated sheep milk casein[J]. Veterinary World,2016,9(10):1152−1156. doi: 10.14202/vetworld.2016.1152-1156
    [42]
    YU Z P, YIN Y G, ZHAO W Z, et al. Novel peptides derived from egg white protein inhibiting alpha-glucosidase[J]. Food Chemistry,2011,129(4):1376−1382. doi: 10.1016/j.foodchem.2011.05.067
    [43]
    ZAMBROWICZ A, ECKERT E, POKORA M, et al. Antioxidant and antidiabetic activities of peptides isolated from a hydrolysate of an egg-yolk protein by-product prepared with a proteinase from Asian pumpkin (Cucurbita ficifolia)[J]. RSC Advances,2015,5(14):10460−10467. doi: 10.1039/C4RA12943A
    [44]
    ZAMBROWICZ A, POKORA M, SETNER B, et al. Multifunctional peptides derived from an egg yolk protein hydrolysate: Isolation and characterization[J]. Amino Acids,2015,47(2):369−380. doi: 10.1007/s00726-014-1869-x
    [45]
    JI W, ZHANG C, JI H. Two novel bioactive peptides from Antarctic krill with dual angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities[J]. Journal of Food Science,2017,82(7):1742−1749. doi: 10.1111/1750-3841.13735
    [46]
    王美华, 查保国, 许敏. 海参肽与海带多糖对小鼠血糖水平的影响[J]. 中国中医药现代远程教育,2015,13(24):145−146. [WANG M H, CHA B G, XU M. Effects of sea cucumber peptides and kelp polysaccharides on blood glucose levels in mice[J]. Modern Distance Education of Chinese Medicine,2015,13(24):145−146. doi: 10.3969/j.issn.1672-2779.2015.24.076
    [47]
    张玉, 王君虹, 王伟, 等. 蚕蛹蛋白酶解肽对糖尿病小鼠的降血糖作用[J]. 浙江农业科学,2018,59(2):266−268. [ZHANG Y, WANG J H, WANG W, et al. The hypoglycemic effect of silkworm pupa proteolytic peptide on diabetic mice[J]. Zhejiang Agricultural Sciences,2018,59(2):266−268.
    [48]
    朱作艺, 张玉, 王君虹, 等. 蜂王浆蛋白肽的制备及其降血糖和抗氧化活性研究[J]. 食品工业科技,2020,41(17):45−50. [ZHU Z Y, ZHANG Y, WANG J H, et al. Preparation of royal jelly protein peptide and its hypoglycemic and antioxidant activity[J]. Science and Technology of Food Industry,2020,41(17):45−50. doi: 10.13386/j.issn1002-0306.2020.17.008
    [49]
    包美丽. 马鹿茸降血糖肽的制备及性质研究[D]. 哈尔滨: 东北林业大学, 2017

    BAO M L. Preparation and properties of red deer antler hypoglycemic peptide[D]. Harbin: Northeast Forestry University, 2017.
  • Related Articles

    [1]CUI Yanru, PANG Rizhao, CEN Qiuyu, WEI Juanfang, ZHANG Anren. Research Progress on the Effect and Mechanism of Probiotics in Relieving Parkinson's Disease Related Symptoms[J]. Science and Technology of Food Industry, 2023, 44(9): 475-481. DOI: 10.13386/j.issn1002-0306.2022070268
    [2]HUANG Yanyan, LIANG Yantong, WU Jiamin, ZENG Xin'an, ZENG Qiaohui, CAO Shilin, LIAO Lan, WANG Langhong. A Review of the Mechanism of Probiotics Controlling Obesity through Intestinal Flora[J]. Science and Technology of Food Industry, 2023, 44(8): 1-8. DOI: 10.13386/j.issn1002-0306.2022080280
    [3]TANG Manyu, WANG Wanqing, QIANG Jingwen, HUA Wei, WU Shuang, LI Yali, ZHEN Xin, LI Chungeng, CHENG Yanling. Interaction and Mechanism of Probiotics with Gut Flora and Immune Regulation: A Review[J]. Science and Technology of Food Industry, 2022, 43(16): 486-493. DOI: 10.13386/j.issn1002-00306.2022030025
    [4]GUO Zichen, LIU Qian, WANG Yunting, WANG Han, ZHAO Jiangyan, ZHAO Yaxin, SUN Yaxuan, DAI Xueling. Effects of Probiotic Compound Preparations on Antioxidant Indexes, Cytokines and Intestinal Flora in Mice Treated with Ceftriaxone Sodium[J]. Science and Technology of Food Industry, 2022, 43(15): 383-391. DOI: 10.13386/j.issn1002-0306.2021110359
    [5]DUAN Hao, LV Yanni, YAN Wenjie. Application Progress of Probiotics in Functional Food in China[J]. Science and Technology of Food Industry, 2022, 43(3): 384-394. DOI: 10.13386/j.issn1002-0306.2020100077
    [6]XIAO Xue-jun, XINHUA·Na-bi. Research Progress on Immunomodulation and Antitumor Effect of Probiotics[J]. Science and Technology of Food Industry, 2020, 41(10): 321-326. DOI: 10.13386/j.issn1002-0306.2020.10.054
    [7]ZHONG Qian-gui, QIU Ming-meng, YANG Juan, YANG Li-zhi, GE Yong-kun, JIANG Yu-ji, CHEN Bing-zhi. Effects of Hericium erinaceus Polysaccharides on the Growth of Gastrointestinal Probiotics[J]. Science and Technology of Food Industry, 2019, 40(19): 301-304,309. DOI: 10.13386/j.issn1002-0306.2019.19.052
    [8]LU Jing-jing, WANG Na-na, JIAO Wen-shu, HUO Gui-cheng. The Mechanism and Research Progress of Probiotics in Relieving Obesity[J]. Science and Technology of Food Industry, 2019, 40(3): 296-299,306. DOI: 10.13386/j.issn1002-0306.2019.03.047
    [9]ZHU Zong-tao, HAN Bing, WAN Feng, MENG Xiang-chen. Research progress on the interventional effects of probiotics on diabetes[J]. Science and Technology of Food Industry, 2017, (22): 321-324. DOI: 10.13386/j.issn1002-0306.2017.22.062
    [10]XUE Chao-hui, ZHANG Lan-wei, WANG Shu-mei, LI Hong-bo. Research progress in probiotics for the prevention and treament of Clostridium difficile-associated diarrhoea[J]. Science and Technology of Food Industry, 2013, (22): 358-362. DOI: 10.13386/j.issn1002-0306.2013.22.090
  • Cited by

    Periodical cited type(3)

    1. 黄延莉,张焕新,吕民琪,吴平,罗靖,吴红霞,刘萍. 低血糖生成指数玉米淀粉添加量对饼干品质及其体外淀粉消化率的影响. 食品安全质量检测学报. 2025(03): 249-257 .
    2. 杨乐 ,刘丽莉 ,丁玥 ,程伟伟 ,肖枫 . 茶多酚-卵白蛋白可食膜对冷鲜猪肉品质的影响及微生物生长模型的构建. 食品与发酵工业. 2025(06): 103-111 .
    3. 周亚峰,王影. 小麦品质对中西面点制作工艺的影响研究. 南方农机. 2024(23): 78-81 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (407) PDF downloads (48) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return