MA Xinyue, LIU Mingyu, LI Rong, et al. Research Progress of Animal-derived Hypoglycemic Peptides[J]. Science and Technology of Food Industry, 2022, 43(22): 438−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110003.
Citation: MA Xinyue, LIU Mingyu, LI Rong, et al. Research Progress of Animal-derived Hypoglycemic Peptides[J]. Science and Technology of Food Industry, 2022, 43(22): 438−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110003.

Research Progress of Animal-derived Hypoglycemic Peptides

More Information
  • Received Date: November 01, 2021
  • Available Online: September 12, 2022
  • Some food-derived active peptides have significant hypoglycemic effects and have the potential to be developed into functional foods, which has attracted attention worldwide. Among them, animal-derived active peptides in food protein hydrolysates have hypoglycemic properties, and their potential mechanisms include inhibition of α-glucosidase or dipeptidyl peptidase-4 (DPP-4). In this paper, the preparation method, the mechanism of action and the evaluation method of the hypoglycemic effect of animal-derived hypoglycemic peptides are introduced, and antiglycemic peptides derived from animal foods such as livestock and poultry meat, fish, blood, milk and eggs are reviewed, which provides a theoretical basis for the prevention and adjuvant therapy of diabetes and the development of related functional foods.
  • [1]
    赵嘉妮, 陈宏, 翁凌, 等. 食源性DPP-IV抑制肽降血糖的作用机制研究进展[J]. 食品工业科技,2021,42(23):447−454. [ZHAO J N, CHEN H, WENG L, et al. Research progress in the mechanism of food-derived DPP-IV inhibitory peptides in lowering blood sugar[J]. Science and Technology of Food Industry,2021,42(23):447−454.
    [2]
    魏兰涛, 马晓君, 郑鑫, 等. 参芪降糖颗粒联合艾塞那肽治疗2型糖尿病的临床研究[J]. 现代药物与临床,2021,36(6):1212−1216. [WEI L T, MA X J, ZHENG X, et al. Clinical study of Shenqi Jiangtang granules combined with exenatide in the treatment of type 2 diabetes[J]. Modern Medicine and Clinics,2021,36(6):1212−1216.
    [3]
    袁丽萍, 张丽玲, 江淼, 等. 2型糖尿病合并感染多器官功能障碍综合征与干扰素调节因子5基因多态性的关联性[J]. 中华医院感染学杂志,2021,31(14):2099−2103. [YUAN L P, ZHANG L L, JIANG M, et al. Association of type 2 diabetes mellitus with multiple organ dysfunction syndrome and interferon regulatory factor 5 gene polymorphism[J]. Chinese Journal of Hospital Infection,2021,31(14):2099−2103.
    [4]
    蔡淑芳, 徐婧语, 吴艳青. 糖尿病介导的周细胞损伤对脊髓损伤后血脊屏障破坏的作用[J]. 中国生物化学与分子生物学报,2022,38(5):555−562. [CAI S F, XU J Y, WU Y Q. The effect of diabetes-mediated pericyte injury on the destruction of blood spine barrier after spinal cord injury[J]. Chinese Journal of Biochemistry and Molecular Biology,2022,38(5):555−562.
    [5]
    陈兰英, 徐添, 杨辉, 等. 糖尿病合并脑卒中患者医院感染风险预测模型构建及经济负担评价[J]. 中华医院感染学杂志,2021,31(14):2104−2108. [CHEN L Y, XU T, YANG H, et al. Construction of nosocomial infection risk prediction model and economic burden evaluation for patients with diabetes complicated with stroke[J]. Chinese Journal of Nosocomial Infection,2021,31(14):2104−2108.
    [6]
    龙小凤, 谭薇, 杨曼. 糖尿病视网膜神经变性机制的研究进展[J]. 国际眼科杂志,2021,21(7):1179−1182. [LONG X F, TAN W, YANG M. Research progress in the mechanism of diabetic retinal neurodegeneration[J]. International Journal of Ophthalmology,2021,21(7):1179−1182.
    [7]
    李梦凡, 厉雪艳, 梁冰. 2型糖尿病患者伴发焦虑抑郁现状及其影响因素分析[J]. 中华全科医学,2021,19(7):1135−1137. [LI M F, LI X Y, LIANG B. Analysis of the status quo of anxiety and depression in type 2 diabetes patients and its influencing factors[J]. Chinese General Practice,2021,19(7):1135−1137.
    [8]
    唐莫宗, 黄堃, 吕国红, 等. 老年初诊2型糖尿病应用门冬胰岛素30联合二甲双胍的临床治疗效果[J]. 空军医学杂志,2020,36(4):325−328. [TANG M Z, HUANG K, LU H, et al. The clinical effect of insulin aspart 30 combined with metformin in the early diagnosis of type 2 diabetes in the elderly[J]. Air Force Medical Journal,2020,36(4):325−328. doi: 10.3969/j.issn.2095-3402.2020.04.016
    [9]
    董宇婷, 王荣春. 降糖肽的发展现状及研究进展[J]. 生物信息学,2018,16(2):83−89. [DONG Y T, WANG R C. Development status and research progress of hypoglycemic peptides[J]. Bioinformatics,2018,16(2):83−89.
    [10]
    金泽彬, 贺颖, 李正祎, 等. 二肽基肽酶-4抑制剂治疗Ⅱ型糖尿病研究进展[J]. 吉林医药学院学报,2021,42(4):308−310. [JIN Z B, HE Y, LI Z Y, et al. Research progress in the treatment of type 2 diabetes with dipeptidyl peptidase-4 inhibitors[J]. Journal of Jilin Medical College,2021,42(4):308−310.
    [11]
    ZATORSKI H, SALAGA M, FICHNA J. Role of glucagon-like peptides in inflammatory bowel diseases-current knowledge and future perspectives[J]. Naunyn-Schmiedebergs Archives of Pharmacology,2019,392(11):1321−1330. doi: 10.1007/s00210-019-01698-z
    [12]
    葛平珍, 周才琼. 食源性活性肽制备与分离纯化的研究进展[J]. 食品工业科技,2014,35(4):363−368. [GE P Z, ZHOU C Q. Research progress in the preparation, separation and purification of food-derived active peptides[J]. Science and Technology of Food Industry,2014,35(4):363−368.
    [13]
    巨芳, 张艳华, 李影, 等. 玉米肽制备的研究进展[J]. 中国食物与营养,2009(8):27−29. [JU F, ZHANG Y H, LI Y, et al. Research progress in the preparation of corn peptides[J]. China Food and Nutrition,2009(8):27−29. doi: 10.3969/j.issn.1006-9577.2009.08.008
    [14]
    江明珠. 超声波预处理辅助酶解制备大豆降糖肽及其作用机理[D]. 镇江: 江苏大学, 2018

    JIANG M Z. Preparation of soybean hypoglycemic peptides assisted by ultrasonic pretreatment and enzymatic hydrolysis and its mechanism of action[D]. Zhenjiang: Jiangsu University, 2018.
    [15]
    AYDIN S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA[J]. Peptides,2015,72:4−15. doi: 10.1016/j.peptides.2015.04.012
    [16]
    KEHINDE B A, SHARMA P. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review[J]. Critical Reviews in Food Science and Nutrition,2020,60(2):322−340. doi: 10.1080/10408398.2018.1528206
    [17]
    HUANG S L, JAO C L, HO K P, et al. Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates[J]. Peptides,2012,35(1):114−121. doi: 10.1016/j.peptides.2012.03.006
    [18]
    ZHU C F, LI G Z, PENG H B, et al. Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus[J]. Applied Physiology, Nutrition, and Metabolism,2010,35(6):797−804. doi: 10.1139/H10-075
    [19]
    曹茂启, 王珏, 罗骏, 等. 分子对接技术在天然产物小分子与靶标蛋白相互作用中的研究进展[J]. 广东化工,2019,46(19):109−130. [CAO M Q, WANG J, LUO J, et al. Research progress of molecular docking technology in the interaction of natural product small molecules with target proteins[J]. Guangdong Chemical Industry,2019,46(19):109−130.
    [20]
    张征立. 固定化酶制备降血糖肽及其生物学活性评价[D]. 镇江: 江苏科技大学, 2019

    ZHANG Z L. Preparation of hypoglycemic peptide by immobilized enzyme and evaluation of its biological activity[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.
    [21]
    KĘSKA P, STADNIK J, BĄK O, et al. Meat proteins as dipeptidyl peptidase IV inhibitors and glucose uptake stimulating peptides for the management of a type 2 diabetes mellitus in silico study[J]. Nutrients,2019,11(10):2537. doi: 10.3390/nu11102537
    [22]
    LAN V T, ITO K, OHNO M, et al. Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor[J]. Food Chemistry,2015,175:66−73. doi: 10.1016/j.foodchem.2014.11.131
    [23]
    SIM M K, WONG Y C, XU X G, et al. Hypoglycemic action of chicken meat extract in type-2 diabetic KKAy mice and GK rats[J]. Bioscience, Biotechnology, and Biochemistry,2009,73(12):2583−2588. doi: 10.1271/bbb.90328
    [24]
    JANNIKE Ø, LISE M, LISE B A, et al. Lean fish intake decreases the risk of type 2 diabetes mellitus in Norwegian women[J]. Current Developments in Nutrition,2019,3(1):P18−036-19.
    [25]
    KETNAWA S, SUWAL S, HUANG J Y, et al. Selective separation and characterisation of dual ACE and DPP-IV inhibitory peptides from rainbow trout (Oncorhynchus mykiss) protein hydrolysates[J]. International Journal of Food Science and Technology,2019,54(4):1062−1073. doi: 10.1111/ijfs.13939
    [26]
    WANG K, YANG X, LOU W, et al. Discovery of dipeptidyl peptidase 4 inhibitory peptides from Largemouth bass (Micropterus salmoides) by a comprehensive approach[J]. Bioorganic Chemistry,2020,105:104432. doi: 10.1016/j.bioorg.2020.104432
    [27]
    ZHANG Y, CHEN R, CHEN X, et al. Dipeptidyl peptidase IV-inhibitory peptides derived from silver carp (Hypophthalmichthys molitrix Val.) proteins[J]. Journal of Agricultural and Food Chemistry,2016,64(4):831−839. doi: 10.1021/acs.jafc.5b05429
    [28]
    NONGONIERMA A B, FITZGERALD R J. An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides[J]. Food Chemistry,2014,165:489−498. doi: 10.1016/j.foodchem.2014.05.090
    [29]
    LOREY S, STÖCKEL-MASCHEK A, FAUST J, et al. Different modes of dipeptidyl peptidase IV (CD26) inhibition by oligopeptides derived from the N-terminus of HIV-1 Tat indicate at least two inhibitor binding sites[J]. European Journal of Biochemistry,2003,270(10):2147−2156. doi: 10.1046/j.1432-1033.2003.03568.x
    [30]
    REIMANN F, WILLIAMS L, DA SILVA XAVIER G, et al. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells[J]. Diabetologia,2004,47(9):1592−1601. doi: 10.1007/s00125-004-1498-0
    [31]
    NONGONIERMA A B, FITZGERALD R J. Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides[J]. Journal of Functional Foods,2013,5(4):1909−1917. doi: 10.1016/j.jff.2013.09.012
    [32]
    HARNEDY P A, PARTHSARATHY V, MCLAUGHLIN C M, et al. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides[J]. Food Research International (Ottawa, Ont.),2018,106:598−606. doi: 10.1016/j.foodres.2018.01.025
    [33]
    HARNEDY P A, MCLAUGHLIN C M, O'KEEFFE M B, et al. Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity[J]. Food Research International (Ottawa, Ont.),2020,131:108989. doi: 10.1016/j.foodres.2020.108989
    [34]
    WANG T Y, HSIEH C H, HUNG C C, et al. Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 stimulators improve glycaemic control in diabetic rats: A comparison between warm- and cold-water fish[J]. Journal of Functional Foods,2015,19:330−340. doi: 10.1016/j.jff.2015.09.037
    [35]
    JENSEN C, DALE H F, HAUSKEN T, et al. Supplementation with cod protein hydrolysate in older adults: A dose range cross-over study[J]. Journal of Nutritional Science,2019,8:e40. doi: 10.1017/jns.2019.37
    [36]
    刘丽君. 驼血抗氧化与降糖活性肽的制备与鉴定[D]. 呼和浩特: 内蒙古农业大学, 2019

    LIU L J. Preparation and identification of anti-oxidant and hypoglycemic peptides from camel blood[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
    [37]
    LAFARGA T, O'CONNOR P, HAYES M. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis[J]. Peptides,2014,59:53−62. doi: 10.1016/j.peptides.2014.07.005
    [38]
    KORISH A A, ABDEL GADER AGM, ALHAIDER A A. Comparison of the hypoglycemic and antithrombotic (anticoagulant) actions of whole bovine and camel milk in streptozotocin-induced diabetes mellitus in rats[J]. Journal of Dairy Science,2020,103(1):30−41. doi: 10.3168/jds.2019-16606
    [39]
    NONGONIERMA A B, CADAMURO C, LE GOUIC A, et al. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation[J]. Food Chemistry,2019,279:70−79. doi: 10.1016/j.foodchem.2018.11.142
    [40]
    甲承立. α-乳白蛋白源DPP-4抑制肽的制备以及结构解析与功能评价[D]. 北京: 中国农业科学院, 2019

    JIA C L. Preparation, structure analysis and functional evaluation of α-lactalbumin-derived DPP-4 inhibitory peptide[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
    [41]
    JAN F, KUMAR S, JHA R. Effect of boiling on the antidiabetic property of enzyme treated sheep milk casein[J]. Veterinary World,2016,9(10):1152−1156. doi: 10.14202/vetworld.2016.1152-1156
    [42]
    YU Z P, YIN Y G, ZHAO W Z, et al. Novel peptides derived from egg white protein inhibiting alpha-glucosidase[J]. Food Chemistry,2011,129(4):1376−1382. doi: 10.1016/j.foodchem.2011.05.067
    [43]
    ZAMBROWICZ A, ECKERT E, POKORA M, et al. Antioxidant and antidiabetic activities of peptides isolated from a hydrolysate of an egg-yolk protein by-product prepared with a proteinase from Asian pumpkin (Cucurbita ficifolia)[J]. RSC Advances,2015,5(14):10460−10467. doi: 10.1039/C4RA12943A
    [44]
    ZAMBROWICZ A, POKORA M, SETNER B, et al. Multifunctional peptides derived from an egg yolk protein hydrolysate: Isolation and characterization[J]. Amino Acids,2015,47(2):369−380. doi: 10.1007/s00726-014-1869-x
    [45]
    JI W, ZHANG C, JI H. Two novel bioactive peptides from Antarctic krill with dual angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities[J]. Journal of Food Science,2017,82(7):1742−1749. doi: 10.1111/1750-3841.13735
    [46]
    王美华, 查保国, 许敏. 海参肽与海带多糖对小鼠血糖水平的影响[J]. 中国中医药现代远程教育,2015,13(24):145−146. [WANG M H, CHA B G, XU M. Effects of sea cucumber peptides and kelp polysaccharides on blood glucose levels in mice[J]. Modern Distance Education of Chinese Medicine,2015,13(24):145−146. doi: 10.3969/j.issn.1672-2779.2015.24.076
    [47]
    张玉, 王君虹, 王伟, 等. 蚕蛹蛋白酶解肽对糖尿病小鼠的降血糖作用[J]. 浙江农业科学,2018,59(2):266−268. [ZHANG Y, WANG J H, WANG W, et al. The hypoglycemic effect of silkworm pupa proteolytic peptide on diabetic mice[J]. Zhejiang Agricultural Sciences,2018,59(2):266−268.
    [48]
    朱作艺, 张玉, 王君虹, 等. 蜂王浆蛋白肽的制备及其降血糖和抗氧化活性研究[J]. 食品工业科技,2020,41(17):45−50. [ZHU Z Y, ZHANG Y, WANG J H, et al. Preparation of royal jelly protein peptide and its hypoglycemic and antioxidant activity[J]. Science and Technology of Food Industry,2020,41(17):45−50. doi: 10.13386/j.issn1002-0306.2020.17.008
    [49]
    包美丽. 马鹿茸降血糖肽的制备及性质研究[D]. 哈尔滨: 东北林业大学, 2017

    BAO M L. Preparation and properties of red deer antler hypoglycemic peptide[D]. Harbin: Northeast Forestry University, 2017.
  • Cited by

    Periodical cited type(5)

    1. 梅天娇,司家勇,张治中,刘佳妮,黄博荣,仪锦文. 基于油茶茶枯的生物质碳点制备及对Fe~(3+)检测研究. 化学世界. 2025(01): 25-32 .
    2. 何芳,张颖,张运良,孙双姣. 电化学法制备碳点荧光探针测定氯霉素含量的研究. 邵阳学院学报(自然科学版). 2024(01): 57-65 .
    3. 刘凯. 基于荧光探针技术的畜产品兽药残留检测方法. 饲料博览. 2024(01): 35-39 .
    4. 刘梅,米琳静,张雅欣,周怡伽,唐青愉,王艳虹,陈红,廉向金,付春梅. 荧光氮掺杂碳点构建鸡肉中氟喹诺酮类药物的高通量检测方法. 中国测试. 2024(11): 73-81 .
    5. 王小燕,刘峥,郭容婷,丁智远,吕奕菊,孔翔飞. 荧光可视化技术在食品分析中的应用进展. 理化检验-化学分册. 2023(11): 1357-1364 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (405) PDF downloads (48) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return