SUN Xiangyang, WANG Jie, YAO Hongmei, et al. Optimization of Conditions for γ-Aminobutyric Acid Yield by Co-fermentation of Enterococcus faecium with Saccharomyces cerevisiae and Mechanism Research[J]. Science and Technology of Food Industry, 2022, 43(15): 132−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100274.
Citation: SUN Xiangyang, WANG Jie, YAO Hongmei, et al. Optimization of Conditions for γ-Aminobutyric Acid Yield by Co-fermentation of Enterococcus faecium with Saccharomyces cerevisiae and Mechanism Research[J]. Science and Technology of Food Industry, 2022, 43(15): 132−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100274.

Optimization of Conditions for γ-Aminobutyric Acid Yield by Co-fermentation of Enterococcus faecium with Saccharomyces cerevisiae and Mechanism Research

More Information
  • Received Date: October 25, 2021
  • Available Online: May 29, 2022
  • In order to improve the yield of γ-aminobutyric acid (GABA), the co-fermentation conditions of Enterococcus faecium AB157 and Saccharomyces cerevisiae SC-125 were optimized by one-factor-at-a-time method and response surface methodology (RSM). Simultaneously, the enzyme activity of glutamate decarboxylase (GAD) was analyzed under optimal conditions in co-fermentation and single strain fermentation systems, and the mechanism of high GABA yield was explored by adding cell-free supernatant (CFS). The optimization results showed that when the overall quantity of inoculum was 2% (V/V), the optimal co-fermentation conditions were as follows: The fermentation temperature was 35 ℃, the inoculum proportions of E. faecium AB157 and S. cerevisiae SC-125 was 5:1 (V/V), and the L-monosodium glutamate concentration was 12 g/L with shaking fermentation for 96 h. In addition, the yield of 6.55 g/L GABA was 1.78 times higher than in single strain fermentation systems. The GAD enzyme activity analysis showed that co-fermentation could significantly improve GAD enzyme activity. Meanwhile, GABA yield could be significantly increased by adding CFS of E. faecium AB157 or S. cerevisiae SC-125. This study served as a theoretical foundation for the discussion of the co-fermentation of E. faecium and S. cerevisiae to increase GABA yield and the mechanism of high GABA yield.
  • [1]
    LIN J H, XU Z J, PENG J S, et al. OsProT1 and OsProT3 function to mediate proline- and γ-aminobutyric acid-specific transport in yeast and are differentially expressed in rice (Oryza sativa L.)[J]. Rice,2019,12(1):1−10. doi: 10.1186/s12284-018-0262-x
    [2]
    SANCHART C, RATTANAPORN O, HALTRICH D, et al. Technological and safety properties of newly isolated GABA-producing Lactobacillus futsaii strains[J]. Journal of Applied Microbiology,2016,121(3):734−745. doi: 10.1111/jam.13168
    [3]
    周春英, 陶荣芬, 顾永健, 等. γ-氨基丁酸对亚综合征性抑郁认知功能的作用[J]. 临床精神医学杂志,2011,21(1):12−14. [ZHOU C Y, TAO R F, GU Y J, et al. Effect of sertraline with γ-aminobutyric acid on cognitive function of the subsyndromal symptomatic depression[J]. Journal of Clinical Psychiatry,2011,21(1):12−14.

    ZHOU C Y, TAO R F, GU Y J, et al. Effect of sertraline with γ-aminobutyric acid on cognitive function of the subsyndromal symptomatic depression[J]. Journal of Clinical Psychiatry, 2011, 21(1): 12-14.
    [4]
    HUANG C Y, KUO W W, WANG H F, et al. GABA tea ameliorates cerebral cortex apoptosis and autophagy in streptozotocin-induced diabetic rats[J]. Journal of Functional Foods,2014,6:534−544. doi: 10.1016/j.jff.2013.11.020
    [5]
    国立东, 张文文, 刘艳, 等. 传统发酵东北酸菜中植物乳杆菌HUCM115的分离及益生特性[J]. 食品科学,2020,41(18):140−145. [GUO L D, ZHANG W W, LIU Y, et al. Isolation and probiotic properties of Lactobacillus plantarum HUCM115 from traditional pickled Chinese cabbage[J]. Food Science,2020,41(18):140−145. doi: 10.7506/spkx1002-6630-20190807-084

    GUO L D, ZHANG W W, LIU Y, et al. Isolation and probiotic properties of Lactobacillus plantarum HUCM115 from traditional pickled Chinese cabbage[J]. Food Science, 2020, 41(18): 140-145. doi: 10.7506/spkx1002-6630-20190807-084
    [6]
    刘璐, 吴江丽, 杨金桃, 等. 发酵鱼酱酸产GABA乳酸菌的分离筛选及发酵特性研究[J]. 食品科学,2021,42(18):73−79. [LIU L, WU J L, YANG J T, et al. Isolation and fermentation characteristics of γ-aminobutyric acid-producing lactic acid bacteria from Yujiang, a traditional Miao ethnic fermented condiment[J]. Food Science,2021,42(18):73−79. doi: 10.7506/spkx1002-6630-20200914-182

    LIU L, WU J L, YANG J T, et al. Isolation and fermentation characteristics of γ-aminobutyric acid-producing lactic acid bacteria from Yujiangsuan, a traditional Miao ethnic fermented condiment[J]. Food Science, 2021, 42(18): 73-79. doi: 10.7506/spkx1002-6630-20200914-182
    [7]
    司阔林, 徐捐捐, 岳田利, 等. 布氏乳杆菌产γ-氨基丁酸发酵条件的优化[J]. 食品科学,2020,41(2):87−93. [SI K L, XU J J, YUE T L, et al. Optimization of fermentation conditions for γ-aminobutyric acid production by Lactobacillus buchneri[J]. Food Science,2020,41(2):87−93. doi: 10.7506/spkx1002-6630-20181218-210

    SI K L, XU J J, YUE T L, et al. Optimization of fermentation conditions for γ-aminobutyric acid production by Lactobacillus buchneri[J]. Food Science, 2020, 41(2): 87-93. doi: 10.7506/spkx1002-6630-20181218-210
    [8]
    谭霄, 孙擎, 曾林, 等. 1株产γ-氨基丁酸植物乳杆菌谷氨酸脱羧酶基因的克隆与表达[J]. 食品科学,2018,39(18):159−165. [TAN X, SUN Q, ZENG L, et al. Cloning and expressing of glutamate decarboxylase gene from Lactobacillus plantarum producing γ-aminobutyric acid[J]. Food Science,2018,39(18):159−165. doi: 10.7506/spkx1002-6630-201818025

    TAN X, SUN Q, ZENG L, et al. Cloning and expressing of glutamate decarboxylase gene from Lactobacillus plantarum producing γ-aminobutyric acid[J]. Food Science, 2018, 39(18): 159-165. doi: 10.7506/spkx1002-6630-201818025
    [9]
    陈烟兰, 杨民和. 产谷氨酸脱羧酶真菌的检测和筛选[J]. 微生物学杂志,2013,33(4):22−29. [CHEN Y L, YANG M H. Detection and screening of fungal strains producing glutamic acid decarboxylase[J]. Journal of Microbiology,2013,33(4):22−29.

    CHEN Y L, YANG M H. Detection and screening of fungal strains producing glutamic acid decarboxylase[J]. Journal of Microbiology, 2013, 33(4): 22-29.
    [10]
    赵炜彤. 高产γ-氨基丁酸酵母菌菌株的筛选、诱变及发酵条件优化[D]. 长春: 吉林农业大学, 2015

    ZHAO W T. The study on screening and mutation breeding of high-yield γ-aminobutyric acid yeast strains and optimization of its fermentation conditions[D]. Changchun: Jilin Agricultural University, 2015.
    [11]
    曾林, 刘波, 许小艳, 等. 四川泡菜中产γ-氨基丁酸微生物的系统发育与表达能力评估[J]. 食品科学,2017,38(2):87−91. [ZENG L, LIU B, XU X Y, et al. Phylogeny and performance assessment of γ-aminobutyric acid-producing microorganisms from Sichuan pickles[J]. Food Science,2017,38(2):87−91. doi: 10.7506/spkx1002-6630-201702014

    ZENG L, LIU B, XU X Y, et al. Phylogeny and performance assessment of γ-aminobutyric acid-producing microorganisms from Sichuan pickles[J]. Food Science, 2017, 38(2): 87-91. doi: 10.7506/spkx1002-6630-201702014
    [12]
    李文, 董明盛. 发酵鹰嘴豆乳产γ-氨基丁酸乳酸菌的复合诱变选育[J]. 食品科学,2018,39(16):147−153. [LI W, DONG M S. Improving γ-aminobutyric acid production of lactic acid bacteria in chickpea milk by compound mutagenesis[J]. Food Science,2018,39(16):147−153. doi: 10.7506/spkx1002-6630-201816022

    LI W, DONG M S. Improving γ-aminobutyric acid production of lactic acid bacteria in chickpea milk by compound mutagenesis[J]. Food Science, 2018, 39(16): 147-153. doi: 10.7506/spkx1002-6630-201816022
    [13]
    刘豪栋, 杨昳津, 林高节, 等. 酵母与乳酸菌的相互作用模式及其在发酵食品中的应用研究进展[J]. 食品科学,2022,43(9):268−274. [LIU H D, YANG Y J, LIN G J, et al. Research progress on interaction patterns between yeast and lactic acid bacteria and their application in fermented foods[J]. Food Science,2022,43(9):268−274.

    LIU H D, YANG Y J, LIN G J, et al. Research progress on interaction patterns between yeast and lactic acid bac- teria and their application in fermented foods[J]. Food Science,2022,43(9):268-274.
    [14]
    赵小燕. 酿酒酵母与植物乳杆菌IMAU10120共生菌株筛选及其益生特性研究[D]. 呼和浩特: 内蒙古农业大学, 2014

    ZHAO X Y. Screening strains of S. cerevisiae with the co-symbiosis of L. plantarum IMAU10120 for probiotic properties[D]. Hohhot: Inner Mongolia Agricultural University, 2014.
    [15]
    ROOSTITA R, FLEET G H. The occurrence and growth of yeasts in Camembert and Blue-veined cheeses[J]. International Journal of Food Microbiology,1996,28(3):393−404. doi: 10.1016/0168-1605(95)00018-6
    [16]
    莫依灿, 钟伟俊, 何湛, 等. 黄酒中乳酸菌的研究进展[J]. 中国酿造,2015,34(9):5−8. [MO Y C, ZHONG W J, HE Z, et al. Research progress of lactic acid bacteria in Chinese rice wine[J]. China Brewing,2015,34(9):5−8. doi: 10.11882/j.issn.0254-5071.2015.09.002

    MO Y C, ZHONG W J, HE Z, et al. Research progress of lactic acid bacteria in Chinese rice wine[J]. China Brewing, 2015, 34(9): 5-8. doi: 10.11882/j.issn.0254-5071.2015.09.002
    [17]
    白天天, 郭雪峰. 屎肠球菌的特性及其在畜牧生产中的应用研究进展[J]. 中国畜牧杂志,2021,57(2):16−20. [BAI T T, GUO X F. Characteristics of Enterococcus faecium and its application in livestock production[J]. Chinese Journal of Animal Science,2021,57(2):16−20.

    BAI T T, GUO X F. Characteristics of Enterococcus faecium and its application in livestock production[J]. Chinese Journal of Animal Science, 2021, 57(2): 16-20.
    [18]
    丁耿芝. 酵母菌添加对饲喂不同精粗比饲粮肉牛瘤胃发酵、养分降解和血浆代谢组的影响[D]. 北京: 中国农业大学, 2014

    DING G Z. Effect of Saccharomyces cerevisiae on ruminal fermentation characteristics, nutrient degradation and plasma metabonomics of steers fed diets with different concentrate to forage ratios[D]. Beijing: China Agricultural University, 2014.
    [19]
    孙擎, 曾林, 谭霄, 等. 一株产γ-氨基丁酸屎肠球菌的筛选和发酵条件优化及其益生特性分析[J]. 食品工业科技,2020,41(14):87−93,100. [SUN Q, ZENG L, TAN X, et al. Screening and optimization of fermentation conditions for γ-aminobutyric acid- producing Enterococcus faecium and analysis of probiotic properties[J]. Science and Technology of Food Industry,2020,41(14):87−93,100.

    SUN Q, ZENG L, TAN X, et al. Screening and optimization of fermentation conditions for γ-aminobutyric acid- producing Enterococcus faecium and analysis of probiotic properties[J]. Science and Technology of Food Industry, 2020, 41(14): 87-93, 100.
    [20]
    刘君彦. 食品体系中乳杆菌的压力应答机制及其与酵母的群体相互作用[D]. 广州: 华南理工大学, 2019

    LIU J Y. Lactobacilli stress response mechanism and polymicrobial interaction with yeast in food system[D]. Guangzhou: South China University of Technology, 2019.
    [21]
    苗凯. Lactobacillus plantarumγ-氨基丁酸发酵条件优化及基因组分析[D]. 哈尔滨: 哈尔滨工业大学, 2020

    MIAO K. Optimization of fermentation conditions of γ-aminobutyric acid produced by Lactobacillus plantarum and genome analysis[D]. Harbin: Harbin Institute of Technology, 2020.
    [22]
    张敏. γ-氨基丁酸乳酸菌诱变选育及其发酵条件优化[D]. 芜湖: 安徽工程大学, 2020

    ZHANG M. Mutagenesis breeding of Enterococcus faecalis producing GABA and optimization of fermentation conditions[D]. Wuhu: Anhui Polytechnic University, 2020.
    [23]
    ZHANG Q, SUN Q, TAN X, et al. Characterization of γ-aminobutyric acid (GABA)-producing Saccharomyces cerevisiae and coculture with Lactobacillus plantarum for mulberry beverage brewing[J]. Journal of Bioscience and Bioengineering,2020,129(4):447−453. doi: 10.1016/j.jbiosc.2019.10.001
    [24]
    彭春龙, 黄俊, 赵伟睿, 等. 酸胁迫下短乳杆菌谷氨酸脱羧酶系统关键基因的表达及酶活性响应[J]. 高校化学工程学报,2015,29(2):359−365. [PENG C L, HUANG J, ZHAO W R, et al. Effects of acid stress on the expression of key genes of glutamate decarboxylase system and enzyme activity in Lactobacillus brevis[J]. Journal of Chemical Engineering of Chinese Universities,2015,29(2):359−365.

    PENG C L, HUANG J, ZHAO W R, et al. Effects of acid stress on the expression of key genes of glutamate decarboxylase system and enzyme activity in Lactobacillus brevis[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(2): 359-365.
    [25]
    VILLEGAS J M, BROWN L, GIORI G D, et al. Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough[J]. LWT-Food Science and Technology,2016,67:22−26. doi: 10.1016/j.lwt.2015.11.027
    [26]
    黄祖耀, 薛正莲, 陈涛. 粪肠球菌HX-3细胞转化合成γ-氨基丁酸条件的优化[J]. 食品与发酵科技,2012,48(3):6−9. [HUANG Z Y, XUE Z L, CHEN T, et al. Optimization of biotransformation conditions for γ-aminobutyric acid production by Enterococcus faecalis HX-3 cells[J]. Food and Fermentation Sciences & Technology,2012,48(3):6−9.

    HUANG Z Y, XUE Z L, CHEN T, et al. Optimization of biotransformation conditions for γ-aminobutyric acid production by Enterococcus faecalis HX-3 cells[J]. Food and Fermentation Sciences & Technology 2012, 48(3): 6-9.
    [27]
    SIEUWERTS S, BRON P A, SMID E J. Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation[J]. LWT-Food Science and Technology,2018,90:201−206. doi: 10.1016/j.lwt.2017.12.022
    [28]
    BARTLE L, SUMBY K, SUNDSTROM J, et al. The microbial challenge of winemaking: Yeast-bacteria compatibility[J]. FEMS Yeast Research,2019,19(4):1−47.
    [29]
    JAROSZ D F, BROWN J C S, WALKER G A, et al. Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism[J]. Cell,2014,158(5):1083−1093. doi: 10.1016/j.cell.2014.07.025
    [30]
    KOMATSUZAKI N, SHIMA J, KAWAMOTO S, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods[J]. Food Microbiology,2005,22(6):497−504. doi: 10.1016/j.fm.2005.01.002
    [31]
    XIONG Q, XU Z, XU L, et al. Efficient production of γ-GABA using recombinant E. coli expressing glutamate decarboxylase (GAD) derived from eukaryote Saccharomyces cerevisiae[J]. Applied Biochemistry and Biotechnology,2017,183(4):1390−1400. doi: 10.1007/s12010-017-2506-4
    [32]
    韩雪, 雷鹏, 樵飞, 等. 发酵乳制品中乳酸菌与酵母菌相互作用研究进展[J]. 食品工业科技,2014,35(7):388−391. [HAN X, LEI P, QIAO F, et al. Research progress on symbiotic between yeasts and lactic acid bacteria in fermented dairy products[J]. Science and Technology of Food Industry,2014,35(7):388−391.

    HAN X, LEI P, QIAO F, et al. Research progress on symbiotic between yeasts and lactic acid bacteria in fermented dairy products[J]. Science and Technology of Food Industry, 2014, 35(7): 388-391.
    [33]
    XU D, BEHR J, GEIßLER A J, et al. Label-free quantitative proteomic analysis reveals the lifestyle of Lactobacillus hordei in the presence of Sacchromyces cerevisiae[J]. International Journal of Food Microbiology,2019,294:18−26. doi: 10.1016/j.ijfoodmicro.2019.01.010
  • Cited by

    Periodical cited type(4)

    1. 刘子夜,武琳霞,刘美玉,王蒙. 山东地区不同品种樱桃营养品质评价. 食品安全质量检测学报. 2025(02): 35-45 .
    2. 宋莎,刘方利,解璞,王恩权,张绿萍,金吉林. 玛瑙红樱桃胚败育果实和正常发育果实外观形态比较. 中国果树. 2025(03): 42-46 .
    3. 陈丽娟,王东,李洪雯,刘佳,张国薇. 中国樱桃不同品种(优系)果实品质分析. 热带作物学报. 2024(03): 514-523 .
    4. 赵新玉,杜文瑜,谭梦男,郑晓冬,刘雪梅,闫新焕. 基于气相离子迁移谱技术分析延安市不同县区的富士苹果挥发性成分的差异. 食品安全质量检测学报. 2024(12): 240-250 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (237) PDF downloads (27) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return