Citation: | MA Erlan, ZHANG Fan, LÜ Chunqiu, et al. Structural Characterization of Lipu Taro Globulin and Its Glucose Metabolism Activity on HepG2 Cells[J]. Science and Technology of Food Industry, 2022, 43(15): 359−365. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100267. |
[1] |
杨月欣, 崔红梅, 王岩, 等. 常见谷类和薯类的血糖生成指数[J]. 营养学报,2003(2):185−189. [YANG Yuexin, CUI Hongmei, WANG Yan, et al. The glycemic index of common cereals and tubers products[J]. Journal of Nutrition,2003(2):185−189.
YANG Yuexin, CUI Hongmei, WANG Yan, et al. The glycemic index of common cereals and tubers products[J]. 营养学报, 2003(2): 185-189.
|
[2] |
WU C Y, LIN K W. The antioxidative characteristics of taro and sweet potato protein hydrolysates and their inhibitory capability on angiotensin converting enzyme[J]. Food Science and Technology Research,2017,23(6):845−853. doi: 10.3136/fstr.23.845
|
[3] |
MOHAMMED A I, MEGAN J B, ALBERT W N, et al. Tuber storage proteins as potential precursors of bioactive peptides: An in silico analysis[J]. International Journal of Peptide Research and Therapeutics,2019,25(2):437−446. doi: 10.1007/s10989-018-9688-7
|
[4] |
PEREIRA P R, WINTER H C, VERICIMO M A, et al. Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta[J]. Biochimica et Biophysica Acta,2015,1854(1):20−30. doi: 10.1016/j.bbapap.2014.10.013
|
[5] |
PEREIRA P R, AGUILA E M D, VERICIMO M A, et al. Purification and characterization of the lectin from taro (Colocasia esculenta) and its effect on mouse splenocyte proliferation in vitro and in vivo[J]. The Protein Journal,2014,33(1):92−99. doi: 10.1007/s10930-013-9541-y
|
[6] |
PEREIRA P R, CORREA A C N T, VERICIMO M A, et al. Tarin, a potential immunomodulator and COX-inhibitor lectin found in taro (Colocasia esculenta)[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(4):878−891. doi: 10.1111/1541-4337.12358
|
[7] |
KUNDU N, CAMPBELL P, HAMPTON B, et al. Antimetastatic activity isolated from Colocasia esculenta (taro)[J]. Anti-Cancer Drugs,2012,23(2):200−211. doi: 10.1097/CAD.0b013e32834b85e8
|
[8] |
YU J, LIU P, DUAN J, et al. Itches-stimulating compounds from Colocasia esculenta (taro): Bioactive-guided screening and LC-MS/MS identification[J]. Bioorganic & Medicinal Chemistry Letters,2015,25(20):4382−4386.
|
[9] |
CHAN Y S, WONG J H, NG T B. A cytokine-inducing hemagglutinin from small taros[J]. Protein & Peptide Letters,2010,17(7):823−830.
|
[10] |
HIRAI M, NAKAMURA K, IMAI T, et al. cDNAs encoding for storage proteins in the tubers of taro (Colocasia esculenta Schott)[J]. The Japanese Journal of Genetics,1993,68(3):229−236. doi: 10.1266/jjg.68.229
|
[11] |
BEZERRA I C, CASTRO L A B, NESHICH G, et al. A corm-specific gene encodes tarin, a major globulin of taro (Colocasia esculenta L. Schott)[J]. Plant Molecular Biology,1995,28(1):137−144. doi: 10.1007/BF00042045
|
[12] |
KUMARI B, SHAMA P, NATH A K. α-Amylase inhibitor in local Himalyan collections of Colocasia: Isolation, purification, characterization and selectivity towards α-amylases from various sources[J]. Pesticide Biochemistry and Physiology,2012,103(1):49−55. doi: 10.1016/j.pestbp.2012.03.003
|
[13] |
MCEWAN R, MADIVHA R P, DJAROVA T, et al. Alpha-amylase inhibitor of amadumbe (Colocasia esculenta): Isolation, purification and selectivity toward α-amylases from various sources[J]. African Journal of Biochemistry Research,2010,4(9):220−224.
|
[14] |
SELTZER R D, STRUMEYER D H. Purification and characterization of esculentamin, a proteinaceous α-amylase inhibitor from the taro root, Colocasia esculenta[J] Journal of Food Biochemistry, 2010.14(3), 199-217.
|
[15] |
吴嘉璠. 茶黄素在HepG2细胞和2型糖尿病小鼠模型中改善胰岛素抵抗及其分子机制研究[D]. 杭州: 浙江大学, 2020.
WU Jiafan. Study on the improvement of insulin resistance and molecular mechanism of theafronin in HepG2 cells and mice model of type 2 diabetes mellitus[D]. Hangzhou: Zhejiang University, 2020.
|
[16] |
方飞, 吴新荣, 罗明俐, 等. HepG2细胞胰岛素抵抗模型的建立及在筛选桑叶有效部位中的应用[J]. 医药导报,2012,31(6):691−694. [FANG Fei, WU Xinrong, LUO Mingli, et al. Establishment of insulin resistance model of HepG2 cells and its application in screening effective parts of mulberry leaves[J]. Medical Review,2012,31(6):691−694. doi: 10.3870/yydb.2012.06.001
FANG Fei, WU Xinrong, LUO Mingli, et al. Establishment of insulin resistance model of HepG2 cells and its application in screening effective parts of Mulberry leaves[J]. Medical review, 2012, 31(6): 691-694. doi: 10.3870/yydb.2012.06.001
|
[17] |
HU S, FAN X, QI P, et al. Identification of anti-diabetes peptides from Spirulina platensis[J]. Journal of Functional Foods,2019,56:333−341. doi: 10.1016/j.jff.2019.03.024
|
[18] |
马二兰, 林莹, 涂连, 等. 芋头球蛋白的提取纯化及其对α-淀粉酶和α-葡萄糖苷酶抑制活性研究[J]. 食品工业科技,2021,42(14):25−32. [MA Erlan, LIN Ying, TU Lian, et al. Extraction and purification of taro globulin and its inhibitory activity against α-amylase and α-glucosidase[J]. Science and Technology of Food Industry,2021,42(14):25−32.
MA Erlan, LIN Ying, TU Lian, et al. Extraction and purification of taro globulin and its inhibitory activity against α-amylase and α-glucosidase[J]. Science and Technology of Food Industry, 201, 42(14): 25-32.
|
[19] |
RAO Q, LABIZA T P. Effect of moisture content on selected physicochemical properties of two commercial hen egg white powders[J]. Food Chemistry,2012,132(1):373−384. doi: 10.1016/j.foodchem.2011.10.107
|
[20] |
SHARMA G M, MUNDOMA C, SEAVY M, et al. Purification and biochemical characterization of Brazil nut (Bertholletia excelsa L.) seed storage proteins[J]. Journal of Agricultural & Food Chemistry,2010,58(9):5714−5723.
|
[21] |
孙佳悦, 钱方, 姜淑娟, 等. 基于红外光谱分析热处理对牛乳蛋白质二级结构的影响[J]. 食品科学,2017,38(23):82−86. [SUN Jiayue, QIAN Fang, JIANG Shujuan, et al. Effects of heat treatment on protein secondary structure of milk based on infrared spectroscopy[J]. Food Science,2017,38(23):82−86. doi: 10.7506/spkx1002-6630-201723014
SUN Jiayue, QIAN Fang, JIANG Shujuan, et al. Effects of heat treatment on protein secondary structure of milk based on infrared spectroscopy[J]. Food Science, 2017, 38(23): 82-86. doi: 10.7506/spkx1002-6630-201723014
|
[22] |
陈文, 王湘君, 赵阳, 等. 酸水解-全自动氨基酸分析仪测定方格星虫中氨基酸[J]. 食品工业科技,2017,38(3):299−304. [CHEN Wen, WANG Xiangjun, ZHAO Yang, et al. Determination of amino acids from Sipunculs nudus by acid hydrolysis-automatic amino acid analyzer[J]. Science and Technology of Food Industry,2017,38(3):299−304.
CHEN Wen, WANG Xiangjun, ZHAO Yang, et al. Determination of amino acids from Sipunculs nudus by acid hydrolysis-automatic amino acid analyzer[J]. Science and Technology of Food Industry, 2017, 38(3): 299-304.
|
[23] |
尤玲玲, 陈永慧, 刘金福, 等. 苦瓜皂苷对胰岛素抵抗HepG2细胞葡萄糖消耗量的影响[J]. 食品工业科技,2014,35(5):338−340. [YOU Lingling, CHEN Yonghui, LIU Jinfu, et al. The effect of momordica charantia saponins on glucose consumption of insulin-resistant HepG2 cells[J]. Science and Technology of Food Industry,2014,35(5):338−340.
YOU Lingling, CHEN Yonghui, LIU Jinfu, et al. The effect of momordica charantia saponins on glucose consumption of insulin-resistant HepG2 cells[J]. Science and Technology of Food Industry, 2014, 35(5): 338-340.
|
[24] |
童晶晶. 香芋蛋白的提取及其胰蛋白酶抑制剂的研究[D]. 广州: 华南理工大学, 2016.
TONG Jingjing. Study on extraction of taro protein and its trypsin inhibitor[D]. Guangzhou: South China University of Technology, 2016.
|
[25] |
刘志彤, 郑淋, 王晨阳, 等. 海参二肽基肽酶IV抑制肽的酶解制备及结构鉴定[J]. 现代食品科技,2020,36(8):166−174. [LIU Zhitong, ZHENG Lin, WANG Chenyang, et al. Preparation and structure identification of dipeptidyl peptidase IV inhibitory peptide from sea cucumber[J]. Modern Food Science and Technology,2020,36(8):166−174.
LIU Zhitong, ZHENG Lin, WANG Chenyang, et al. Preparation and structure identification of dipeptidyl peptidase IV inhibitory peptide from sea cucumber[J]. Modern Food Science and Technology, 2020, 36(8): 166-174.
|
[26] |
YU Z, YIN Y, ZHAO W, et al. Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase[J]. Food Chemistry,2012,135(3):2078−2085. doi: 10.1016/j.foodchem.2012.06.088
|
[27] |
AUWAL I M, BESTER M J, NEITZ A W, et al. Rational in silico design of novel α-glucosidase inhibitory peptides and in vitro evaluation of promising candidates[J]. Biomedicine & Pharmacotherapy,2018,107:234−242.
|
[28] |
MEISEL H. Multifunctional peptides encrypted in milk proteins[J]. BioFactors,2004,21(1-4):55−61. doi: 10.1002/biof.552210111
|
[29] |
MOLLICA A, ZENGIN G, DURDAGI S, et al. Combinatorial peptide library screening for discovery of diverse α-glucosidase inhibitors using molecular dynamics simulations and binary QSAR models[J]. Journal of Biomolecular Structure & Dynamics,2018,1:726−740.
|
[30] |
RAMADHAN, NAWAS, ZHANG, et al. Purification and identification of a novel antidiabetic peptide from Chinese giant salamander (Andrias davidianus) protein hydrolysate against α-amylase and α-glucosidase[J]. International Journal of Food Properties,2018,20(sup3):3360−3372.
|
[31] |
MARELLA S, MADDIRELA D R, KUMAR E, et al. Mcy protein, a potential antidiabetic agent: Evaluation of carbohydrate metabolic enzymes and antioxidant status[J]. International Journal of Biological Macromolecules,2016,48:481−488.
|
[32] |
JIANG N, ZHANG S, ZHU J, et al. Hypoglycemic, hypolipidemic and antioxidant effects of peptides from red deer antlers in streptozotocin-induced diabetic mice[J]. Tohoku Journal of Experimental Medicine,2015,236(1):71−79. doi: 10.1620/tjem.236.71
|
[33] |
CHEN M D, PAN D D, ZHOU T Q, et al. Novel umami peptide IPIPATKT with dual dipeptidyl peptidase-IV and angiotensin I-converting enzyme inhibitory activities[J]. Journal of Agricultural and Food Chemistry,2021,69(19):5463−5470. doi: 10.1021/acs.jafc.0c07138
|