Citation: | LI Lin, SHAO Lingjian, PENG Xinyan, et al. Optimization of Oil Separation from Spanish Mackerel Viscera by Ultrasonic Field Coupled with Subcritical Water[J]. Science and Technology of Food Industry, 2022, 43(13): 208−217. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100208. |
[1] |
胡名媛, 王锋, 马永建, 等. 鱼油对KKAy糖尿病小鼠糖代谢及pI3K/Akt信号通路的影响[J]. 食品科学,2018,39(11):126−131. [HU M Y, WANG F, MA Y J, et al. Effect of fish oil on glucose metabolism and pI3K/Akt signaling pathway in diabetic KKAy mice[J]. Food Science,2018,39(11):126−131. doi: 10.7506/spkx1002-6630-201811020
HU M Y, WANG F, MA Y J, et al. Effect of fish oil on glucose metabolism and PI3K/Akt signaling pathway in diabetic KKAy mice[J]. Food Science, 2018, 39(11): 126-131. doi: 10.7506/spkx1002-6630-201811020
|
[2] |
MASON R P. New insights into mechanisms of action for omega-3 fatty acids in atherothrombotic cardiovascular disease[J]. Current Atherosclerosis Reports,2019,21(2):1−11.
|
[3] |
BIE N, HAN L, MENG M, et al. Anti-tumor mechanism of eicosapentaenoic acid (EPA) on ovarian tumor model by improving the immunomodulatory activity in F344 rats[J]. Journal of Functional Foods,2020,65:103739. doi: 10.1016/j.jff.2019.103739
|
[4] |
GHAZALE H, RAMADAN N, MANTASH S, et al. Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post—Traumatic brain injury[J]. Behavioural Brain Research,2018,340:1−13. doi: 10.1016/j.bbr.2017.11.007
|
[5] |
TIBBETTS S M, SCAIFE M A, ARMENTA R E. Apparent digestibility of proximate nutrients, energy and fatty acids in nutritionally-balanced diets with partial or complete replacement of dietary fish oil with microbial oil from a novel Schizochytrium sp. (T18) by juvenile Atlantic salmon (Salmo salar L.)[J]. Aquaculture,2020,520:735003. doi: 10.1016/j.aquaculture.2020.735003
|
[6] |
RYCKEBOSCH E, BRUNEEL C, TERMOTEVERHALLE R, et al. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil[J]. Food Chemistry,2014,160:393−400. doi: 10.1016/j.foodchem.2014.03.087
|
[7] |
PEREZ-VELAZQUEZ M, GATLIN D M, GONZALEZ-FELIX M L, et al. Partial replacement of fishmeal and fish oil by algal meals in diets of red drum Sciaenops ocellatus[J]. Aquaculture,2018,487:41−50. doi: 10.1016/j.aquaculture.2018.01.001
|
[8] |
陶宁萍, 鲍丹. 鱼油的营养和药用价值及其提取工艺的研究进展[J]. 上海水产大学学报,2005,2:197−201. [TAO N P, BAO D. Nutritive value and development of extraction technique on fish oil[J]. Journal of Shanghai Fisheries University,2005,2:197−201.
TAO N P, BAO D. Nutritive value and development of extraction technique on fish oil[J]. Journal of Shang Hai Fisheries University, 2005, 2: 197-201.
|
[9] |
BUCIO S L, SANZ M T, BELTRAN S, et al. Study of the influence of process parameters on liquid and supercritical CO2 extraction of oil from rendered materials: Fish meal and oil characterization[J]. Journal of Supercritical Fluids,2016,107:270−277. doi: 10.1016/j.supflu.2015.09.019
|
[10] |
DE-SOUZA T S P, DIAS F F G, KOBLITZ M G B, et al. Effects of enzymatic extraction of oil and protein from almond cake on the physicochemical and functional properties of protein extracts[J]. Food and Bioproducts Processing,2020,122:280−290. doi: 10.1016/j.fbp.2020.06.002
|
[11] |
LIU Z Z, LI H L, CUI G Q, et al. Efficient extraction of essential oil from Cinnamomum burmannii leaves using enzymolysis pretreatment and followed by microwave-assisted method[J]. LWT-Food Science and Technology,2021,147(1):111497.
|
[12] |
LIU W, XIAO B, YANG G L, et al. Rapid salt-assisted microwave demulsification of oil-rich emulsion obtained by aqueous enzymatic extraction of peanut seeds[J]. European Journal of Lipid Science & Technology,2020,122(2):1−14.
|
[13] |
李莹, 黄德春, 陈贵堂, 等. 昆布多糖不同提取工艺优化及其理化性质和抗肿瘤活性比较[J]. 食品科学,2019,40(6):289−295. [LI Y, HUANG D CH, CHEN G T, et al. Polysaccharides from Laminaria japonica: Optimization of different extraction processes and comparison of physicochemical properties and antitumor activity[J]. Food Science,2019,40(6):289−295. doi: 10.7506/spkx1002-6630-20180312-147
LI Y, HUANG D CH, CHEN G T, et al. Polysaccharides from Laminaria japonica: Optimization of different extraction processes and comparison of physicochemical properties and antitumor activity[J]. Food Science, 2019, 40(6): 289-295. doi: 10.7506/spkx1002-6630-20180312-147
|
[14] |
BASEGMEZ H I O, POVILAITIS D, KITRYTE V, et al. Biorefining of blackcurrant pomace into high value functional ingredients using supercritical CO2, pressurized liquid and enzyme assisted extractions[J]. The Journal of Supercritical Fluids,2017,124:10−19. doi: 10.1016/j.supflu.2017.01.003
|
[15] |
MACKELA I, ANDRIEKUS T, VENSKUTONIS P R. Biorefining of buckwheat (Fagopyrum esculentum) hulls by using supercritical fluid, Soxhlet, pressurized liquid and enzyme-assisted extraction methods[J]. Journal of Food Engineering,2017,213:38−46. doi: 10.1016/j.jfoodeng.2017.04.029
|
[16] |
PUNIA S, KUMAR M, SIROHA A K, et al. Rice bran oil: Emerging trends in extraction, health benefit, and its industrial application[J]. Rice Science,2021,28(3):217−232. doi: 10.1016/j.rsci.2021.04.002
|
[17] |
TEKIN K, KARAGOZ S, BEKTAS S. A review of hydrothermal biomass processing[J]. Renewable and Sustainable Energy Reviews,2014,40:673−687. doi: 10.1016/j.rser.2014.07.216
|
[18] |
HIRANO Y, MIYATA Y, TANIGUCHI M, et al. Fe-assisted hydrothermal liquefaction of cellulose: Effects of hydrogenation catalyst addition on properties of water-soluble fraction[J]. Journal of Analytical & Applied Pyrolysis,2020,145(1):1047191−1047197.
|
[19] |
CONTI F, TOOR S S, PEDERSEN T H, et al. Valorization of animal and human wastes through hydrothermal liquefaction for biocrude production and simultaneous recovery of nutrients[J]. Energy Conversion and Management,2020,216:112925. doi: 10.1016/j.enconman.2020.112925
|
[20] |
GOLLAKOTA A R K, KISHORE N, GU S. A review on hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews,2018,81:1378−1392. doi: 10.1016/j.rser.2017.05.178
|
[21] |
DANDAMUDI K P R, MATHEW M, SELVARATNAM T, et al. Recycle of nitrogen and phosphorus in hydrothermal liquefaction biochar from Galdieria sulphuraria to cultivate microalgae[J]. Resources Conservation and Recycling,2021,171:105644. doi: 10.1016/j.resconrec.2021.105644
|
[22] |
EIKANI M H, KHANDAN N, FEYZI E, et al. A shrinking core model for Nannochloropsis salina oil extraction using subcritical water[J]. Renewable Energy,2019,131:660−666. doi: 10.1016/j.renene.2018.07.091
|
[23] |
SAMADI M, ABIDIN Z Z, YOSHIDA H, et al. Subcritical water extraction of essential oil from Aquilaria malaccensis leaves[J]. Separation Science & Technology,2019,55(15):2779−2798.
|
[24] |
WATANABE M, LIDA T, INOMATA H. Decomposition of a long chain saturated fatty acid with some additives in hot compressed water[J]. Energy Conversion and Management,2006,47:3344−3350. doi: 10.1016/j.enconman.2006.01.009
|
[25] |
TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies[J]. Energy,2011,36:2328−2342. doi: 10.1016/j.energy.2011.03.013
|
[26] |
ROGALINSKI T, HERRMANN S, BRUNNER G. Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis[J]. Journal of Supercritical Fluids,2005,36:49−58. doi: 10.1016/j.supflu.2005.03.001
|
[27] |
CHOI J S, JANG D B, MOON H E, et al. Physiological properties of Engraulis japonicus muscle protein hydrolysates prepared by subcritical water hydrolysis[J]. Journal of Environmental Biology,2017,38(2):283−289. doi: 10.22438/jeb/38/2/MRN-973
|
[28] |
PHUSUNTI N, PHETWAROTAI W, TIRAPANAMPAI C, et al. Subcritical water hydrolysis of microalgal biomass for protein and pyrolytic bio-oil recovery[J]. Bioenergy Research,2017,10(4):1005−1017. doi: 10.1007/s12155-017-9859-y
|
[29] |
FAN X D, HU S F, WANG K, et al. Coupling of ultrasound and subcritical water for peptides production from Spirulina platensis[J]. Food and Bioproducts Processing,2020,121:105−112. doi: 10.1016/j.fbp.2020.01.012
|
[30] |
ROGALINSKI T, LIU K, ALBRECHT T, et al. Hydrolysis kinetics of biopolymers in subcritical water[J]. Journal of Supercritical Fluids,2008,46:335−341. doi: 10.1016/j.supflu.2007.09.037
|
[31] |
YAN J K, WU L X, CAI W D, et al. Subcritical water extraction-based methods affect the physicochemical and functional properties of soluble dietary fibers from wheat bran[J]. Food Chemistry,2019,298(15):124987.
|
[32] |
朱严华, 杨波, 黄菊, 等. 超声提取-气相色谱-串联质谱法测定煎烤鱿鱼中16种多环芳烃[J]. 食品工业科技,2021,42(16):263−270. [ZHU Y H, YANG B, HUANG J, et al. Determination of 16 polycyclic aromatic hydrocarbons (PAHs) in fried squid by ultrasonic extraction-gas chromatography-mass spectrometry[J]. Science and Technology of Food Industry,2021,42(16):263−270.
ZHU Y H, YANG B, HUANG J, et al. Determination of 16 polycyclic aromatic hydrocarbons (PAHs) in fried squid by ultrasonic extraction-gas chromatography-mass spectrometry[J]. Science and Technology of Food Industry, 2021, 42(16): 263-270.
|
[33] |
HUANG P P, YANG R F, QIU T Q, et al. Solubility of fatty acids in subcritical water[J]. The Journal of Supercritical Fluids,2013,81(5):221−225.
|
[34] |
HUANG P P, YANG R F, QIU T Q, et al. Ultrasound-enhanced subcritical water extraction of volatile oil from Lithospermum erythrorhizon[J]. Separation Science & Technology,2010,45(10):1433−1439.
|
[35] |
THOMPSON M, OWEN L, WILKINSON K, et al. A comparison of the Kjeldahl and Dumas methods for the determination of protein in foods, using data from a proficiency testing scheme[J]. Analyst,2002,127(12):1666−1668. doi: 10.1039/b208973b
|
[36] |
ZHANG J X, WEN C T, ZHANG H H, et al. Recent advances in the extraction of bioactive compounds with subcritical water: A review[J]. Trends in Food Science & Technology,2020,95:183−195.
|
[37] |
HALIM N A A, ABIDIN Z Z, SIAJAM S I, et al. Optimization studies and compositional analysis of subcritical water extraction of essential oil from Citrus hystrix DC. leaves[J]. The Journal of Supercritical Fluids,2021,178:105384−105399. doi: 10.1016/j.supflu.2021.105384
|
[38] |
KUVENDZIEV S, LISICHKOV K, ZEKOVIC Z, et al. Supercritical fluid extraction of fish oil from common carp (Cyprinus carpio L.) tissues[J]. The Journal of Supercritical Fluids,2018,133:528−534. doi: 10.1016/j.supflu.2017.11.027
|
[39] |
SUNPHORKA S, CHAVASIRI W, OSHIMA Y, et al. Kinetic studies on rice bran protein hydrolysis in subcritical water[J]. The Journal of Supercritical Fluids,2012,65:54−60. doi: 10.1016/j.supflu.2012.02.017
|
[40] |
RAMACHANDRAIAH K, KOH B B, DAVAATSEREN M, et al. Characterization of soy protein hydrolysates produced by varying subcritical water processing temperature[J]. Innovative Food Science and Emerging Technologies,2017,43:201−206. doi: 10.1016/j.ifset.2017.08.011
|
[41] |
ZHANG Y C, SUN Q X, LIU S C, et al. Extraction of fish oil from fish heads using ultra-high pressure pre-treatment prior to enzymatic hydrolysis[J]. Innovative Food Science & Emerging Technologies,2021,70:102670−102680.
|
1. |
郝慧敏,靳学远,纵伟. 栀子油/米糠蛋白纳米乳液的高压微射流制备工艺优化及稳定性研究. 食品科技. 2024(02): 242-249 .
![]() | |
2. |
杨春敏,教杨,余秀琼,黎绍基. 响应面优化九月黄籽油索氏提取工艺. 食品工程. 2024(01): 46-50 .
![]() | |
3. |
沈俊颖,杨艳,易有金,刘汝宽,李刘泽木. 栀子有效成分活性作用及其不同提取方法研究进展. 中国食品添加剂. 2024(04): 318-326 .
![]() | |
4. |
刘芳,颜彬,龙吉财,许林,唐映红,陈建荣. 栀子不同部位提取工艺优化与7种成分含量测定. 湖南生态科学学报. 2022(02): 10-18 .
![]() | |
5. |
刘杰,郭江涛,刘耀,程纯,黄凯,简梨娜,徐剑,张永萍. 大果木姜子挥发油的提取工艺优化、成分分析及抗氧化活性. 食品工业科技. 2022(19): 211-219 .
![]() |