YAN Xueyu, QIN Bozhong, HUANG Weide, et al. Correlation Analysis between Nutritional Evaluation and Gene Expression of Crassostrea hongkongensis in Different Fattening Sea Areas[J]. Science and Technology of Food Industry, 2022, 43(13): 276−283. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100181.
Citation: YAN Xueyu, QIN Bozhong, HUANG Weide, et al. Correlation Analysis between Nutritional Evaluation and Gene Expression of Crassostrea hongkongensis in Different Fattening Sea Areas[J]. Science and Technology of Food Industry, 2022, 43(13): 276−283. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100181.

Correlation Analysis between Nutritional Evaluation and Gene Expression of Crassostrea hongkongensis in Different Fattening Sea Areas

More Information
  • Received Date: October 18, 2021
  • Available Online: April 29, 2022
  • In the present study, the nutrient composition of Crassostrea hongkongensis from two oyster fattening areas in Qinzhou Bay, Guangxi was evaluated. And then the metabolism-related gene expression in the mantle, adductor muscle and gill tissues of C. hongkongensis was analyzed, and the correlation between nutrient composition and gene expression was discussed. The results showed that the contents of cholesterol, vitamin A, vitamin E, zinc and some amino acids including phenylalanine, histidine, glutamic acid and alanine of C. hongkongensis in Qinzhou Port fattening area were significantly higher than those in Dafeng River fattening area (P<0.05). And the proportion of essential amino acids (35.51%) and the proportion of half-essential amino acids (10.51%) of C. hongkongensis in Qinzhou Port fattening area were also higher than those in Dafeng River fattening area (34.06%, 9.31%). Conversely, the contents of calcium, sodium, magnesium and the proportion of flavor development amino acids (41.33%) of C. hongkongensis in Dafeng River fattening area were better. Moreover, the gene expression of P5CS, GP and SREBP of C. hongkongensis in Qinzhou Port fattening area were higher than those in Dafeng River fattening area, while the gene expression of DYRK was lower, but the differences were not significant (P>0.05). The heat map of Spearman correlation showed that the gene expression of P5CS, GP and SREBP were positively correlated with the contents of multiple nutrient composition and amino acids, in which the gene expression of GP was significantly positively correlated with energy, fat, cholesterol and vitamins (P<0.01), but the gene expression of DYRK was negatively correlated with the contents of various nutrients and 14 amino acids. In conclusion, there were certain differences existed in the contents of nutrient composition and the metabolism-related gene expression of C. hongkongensis from two oyster fattening areas in Qinzhou Bay, which had own characteristics in nutritional value and flavor taste separately, and both oyster culture areas could be used for fattening and breeding of C. hongkongensis.
  • [1]
    钟方杰, 覃波忠, 李选积, 等. 广西钦州大蚝产业发展形势分析[J]. 中国水产,2019(4):53−55. [ZHONG Fangjie, QIN Bozhong, LI Xuanji, et al. Analysis on industrial development situation of Qinzhou oyster in Guangxi[J]. China fisheries,2019(4):53−55.

    ZHONG Fangjie, QIN Bozhong, LI Xuanji, et al. Analysis on industrial development situation of Qinzhou oyster in Guangxi[J]. China fisheries, 2019(4): 53-55.
    [2]
    谢忠明. 海水经济贝类养殖技术(上册)[M]. 北京: 中国农业出版社, 2003

    XIE Zhongming. Culture technology of marine economic shellfish (Volume 1)[M]. Beijing: China agricultural press, 2003.
    [3]
    李琼珍, 罗帮, 张兴志, 等. 香港牡蛎分段式高效养殖方法: 中国, CN108112518A[P]. 2018-06-05

    LI Qiongzhen, LUO Bang, ZHANG Xingzhi, et al. Segmented and efficient culture method of Hong Kong oyster: China, CN108112518A[P]. 2018-06-05.
    [4]
    张智翠. 太平洋牡蛎品质的季节性变化及贮藏过程中的生化变化[D]. 青岛: 中国海洋大学, 2006

    ZHANG Zhicui. Oyster quality changes during different season and storage[D]. Qingdao: Ocean University of China, 2006.
    [5]
    秦华伟, 陈爱华, 刘慧慧, 等. 乳山海域养殖太平洋牡蛎中营养成分及重金属含量分析及评价[J]. 中国渔业质量与标准,2015,5(6):64−70. [QIN Huawei, CHEN Aihua, LIU Huihui, et al. Assessment of content of nutrition ingredients and heavy metal in Crassostrea gigas of Rushan[J]. Chinese Fishery Quality and Standards,2015,5(6):64−70.

    QIN Huawei, CHEN Aihua, LIU Huihui, et al. Assessment of content of nutrition ingredients and heavy metal in Crassostrea gigas of Rushan[J]. Chinese Fishery Quality and Standards, 2015, 5(6): 64-70.
    [6]
    MAËVA Cochet, BROWN Malcolm, KUBE Peter, et al. Understanding the impact of growing conditions on oysters: A study of their sensory and biochemical characteristics[J]. Aquaculture Research,2015,46(3):637−646. doi: 10.1111/are.12210
    [7]
    JASPER Van Houcke, MEDINA Isabel, MAEHRE Hanne-K, et al. The effect of algae diets (Skeletonema costatum and Rhodomonas baltica) on the biochemical composition and sensory characteristics of Pacific cupped oysters (Crassostrea gigas) during land-based refinement[J]. Food Research International,2017,100(pt.1):151.
    [8]
    B-J Vinay, KANYA T-C-Sindhu. Effect of detoxification on the functional and nutritional quality of proteins of karanja seed meal[J]. Food Chemistry,2008,106(1):77−84. doi: 10.1016/j.foodchem.2007.05.048
    [9]
    YAN Xueyu, WEI Lingjing, HUANG Jie, et al. Comparative skin transcriptome between common carp and the variety Jinbian carp (Cyprinus carpio v. jinbian)[J]. Aquaculture research,2020,51(1):187−196. doi: 10.1111/are.14363
    [10]
    闫路路, 王昭萍, 苏家齐, 等. 熊本牡蛎(♀)×葡萄牙牡蛎(♂)杂交子代的营养成分和脂肪代谢相关基因表达分析[J]. 中国海洋大学学报(自然科学版),2017,47(6):53−60. [YAN Lulu, WANG Zhaoping, SU Jiaqi, et al. Determination of nutritive components and expression analysis of lipid metabolism related genes of hybrid of Kumamoto Oyster(♀) and Portuguese Oyster(♂)[J]. Periodical of Ocean University of China,2017,47(6):53−60.

    YAN Lulu, WANG Zhaoping, SU Jiaqi, et al. Determination of nutritive components and expression analysis of lipid metabolism related genes of hybrid of Kumamoto Oyster(♀) and Portuguese Oyster(♂)[J]. Periodical of Ocean University of China, 2017, 47(6): 53-60.
    [11]
    李春燕. 牡蛎营养品质等重要经济性状的遗传定位与基因解析[D]. 北京: 中国科学院大学(中国科学院海洋研究所), 2017

    LI Chunyan. Genetic mapping and gene dissection of nutritional and other important economic traits of the oyster[D]. Beijing: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2017.
    [12]
    何金全, 张虹, 佘智彩, 等. 香港牡蛎Foxl2基因克隆分析与表达模式研究[J]. 基因组学与应用生物学,2020,39(4):1519−1528. [HE Jinquan, ZHANG Hong, SHE Zhicai, et al. Cloning and expression pattern investigation of Crassostrea hongkongensis Foxl2 gene[J]. Genomics and Applied Biology,2020,39(4):1519−1528.

    HE Jinquan, ZHANG Hong, SHE Zhicai, et al. Cloning and expression pattern investigation of Crassostrea hongkongensis Foxl2 gene[J]. Genomics and Applied Biology, 2020, 39(4): 1519-1528.
    [13]
    王恬, 史博, 周龙, 等. 潮间带和潮下带养殖的福建牡蛎生长、营养及呈味成分的差异分析[J]. 厦门大学学报(自然科学版),2020,59(2):246−253. [WANG Tian, SHI Bo, ZHOU Long, et al. Difference analyses of growth, nutrition and taste components of Crassostrea angulata cultured in intertidal zone and subtidal zone[J]. Journal of Xiamen University (Natural science),2020,59(2):246−253.

    WANG Tian, SHI Bo, ZHOU Long, et al. Difference analyses of growth, nutrition and taste components of Crassostrea angulata cultured in intertidal zone and subtidal zone[J]. Journal of Xiamen University(Natural science), 2020, 59(2): 246-253.
    [14]
    林海生, 秦小明, 章超桦, 等. 中国沿海主要牡蛎养殖品种的营养品质和风味特征比较分析[J]. 南方水产科学,2019,15(2):110−120. [LIN Haisheng, QIN Xiaoming, ZHANG Chaohua, et al. Comparative analysis of nutritional components and flavorcharacteristics of cultivated oyster from different coastal areas of China[J]. South China Fisheries Science,2019,15(2):110−120. doi: 10.12131/20180226

    LIN Haisheng, QIN Xiaoming, ZHANG Chaohua, et al. Comparative analysis of nutritional components and flavorcharacteristics of cultivated oyster from different coastal areas of China[J]. South China Fisheries Science, 2019, 15(2): 110-120. doi: 10.12131/20180226
    [15]
    DRIDI S, ROMDHANE M S, ELCAFSI M. Seasonal variation in weight and biochemical composition of the Pacific oyster, Crassostrea gigas in relation to the gametogenic cycle and environmental conditions of the Bizert lagoon, Tunisia[J]. Aquaculture,2007,263(1-4):238−248. doi: 10.1016/j.aquaculture.2006.10.028
    [16]
    杜美荣, 方建光, 葛长字, 等. 盐度和饵料密度对栉孔扇贝稚贝滤水率的影响[J]. 渔业科学进展,2009,30(3):74−78. [DU Meirong, FANG Jianguang, GE Changzi, et al. Effects of salinities and microalgae densities on filtration rates of scallop Chlamys farreri spats[J]. Progress in Fishery Sciences,2009,30(3):74−78. doi: 10.3969/j.issn.1000-7075.2009.03.013

    DU Meirong, FANG Jianguang, GE Changzi, et al. Effects of salinities and microalgae densities on filtration rates of scallop Chlamys farreri spats[J]. Progress in Fishery Sciences, 2009, 30(3): 74-78. doi: 10.3969/j.issn.1000-7075.2009.03.013
    [17]
    丁丹勇, 李长玲, 黄翔鹄, 等. 不同养殖区香港牡蛎营养成分的分析与评价[J]. 安徽农业科学,2018,46(5):91−95. [DING Danyong, LI Changling, HUANG Xianghu, et al. Analysis and Evaluation of nutritive components of Crassostrea hongkongensis from different cultural areas[J]. Journal of Anhui Agricultural Sciences,2018,46(5):91−95. doi: 10.3969/j.issn.0517-6611.2018.05.027

    DING Danyong, LI Changling, HUANG Xianghu, et al. Analysis and Evaluation of nutritive components of Crassostrea hongkongensis from different cultural areas[J]. Journal of Anhui Agricultural Sciences, 2018, 46(5): 91-95. doi: 10.3969/j.issn.0517-6611.2018.05.027
    [18]
    ESPAÑA M S A, RODRÍGUEZ E M R, ROMERO C D. Comparison of mineral and trace element concentrations in two molluscs from the Strait of Magellan (Chile)[J]. Journal of Food Composition & Analysis,2007,20(3-4):273−279.
    [19]
    祁剑飞, 巫旗生, 宁岳, 等. 2个壳色福建牡蛎群体的营养成分差异分析[J]. 厦门大学学报(自然科学版),2019,58(2):276−281. [QI Jianfei, WU Qisheng, NING Yue, et al. Analysis of nutritional component differences between two shell-color groups of Fujian oyster (Crassostrea angulata)[J]. Journal of Xiamen University (Natural Science),2019,58(2):276−281.

    QI Jianfei, WU Qisheng, NING Yue, et al. Analysis of nutritional component differences between two shell-color groups of Fujian oyster(Crassostrea angulata)[J]. Journal of Xiamen University(Natural Science), 2019, 58(2): 276-281.
    [20]
    方玲, 马海霞, 李来好, 等. 华南地区近江牡蛎营养成分分析及评价[J]. 食品工业科技,2018,39(2):301−307. [FANG Ling, MA Haixia, LI Laihao, et al. Analysis and evaluation of nutrient composition in Ostrea rivularis from south China sea coast[J]. Science and Technology of Food Industry,2018,39(2):301−307.

    FANG Ling, MA Haixia, LI Laihao, et al. Analysis and evaluation of nutrient composition in Ostrea rivularis from south China sea coast[J]. Science and Technology of Food Industry, 2018, 39(2): 301-307.
    [21]
    考希宾, 王治伦, 高艳. 微量元素锌和人体健康[J]. 中国地方病防治杂志,2007(3):192−194. [KAO Xibin, WANG Zhilun, GAO Yan. Trace element zinc and human health[J]. Chinese Journal of Control of Endemic Diseases,2007(3):192−194. doi: 10.3969/j.issn.1001-1889.2007.03.010

    KAO Xibin, WANG Zhilun, GAO Yan. Trace element zinc and human health[J]. Chinese Journal of Control of Endemic Diseases, 2007(3): 192-194. doi: 10.3969/j.issn.1001-1889.2007.03.010
    [22]
    王珏. 三种不同养殖处理的鲜活美东牡蛎(C. virginica)的品质评价及其在冷藏期间品质变化的研究[D]. 上海: 上海海洋大学, 2016

    WANG Jue. Quality changes of three different aquaculture-treated live eastern oysters (Crassostrea virginica) during cold storage[D]. Shanghai: Shanghai Ocean University, 2016.
    [23]
    张聪, 刘程惠, 马坤, 等. 大连湾牡蛎中微量元素的分析[J]. 食品研究与开发,2009,30(7):130−133. [ZHANG Cong, LIU Chenghui, MA Kun, et al. Analysis of trace elements in Dalian bay oysters[J]. Food Research and Development,2009,30(7):130−133.

    ZHANG Cong, LIU Chenghui, MA Kun, et al. Analysis of trace elements in Dalian bay oysters[J]. Food Research and Development, 2009, 30(7): 130-133.
    [24]
    M Hosoi, KUBOTA S, TOYOHARA M, et al. Effect of salinity change on free amino acid content in Pacific oyster[J]. Fisheries Science,2003,69(2):395−400. doi: 10.1046/j.1444-2906.2003.00634.x
    [25]
    李晓英, 李勇, 周淑青, 等. 两种淡水螺肉的营养成分分析与评价[J]. 食品科学,2010,31(13):276−279. [LI Xiaoying, LI Yong, ZHOU Shuqing, et al. Analysis and evaluation of nutritional composition in two freshwater fingersnails[J]. Food Science,2010,31(13):276−279.

    LI Xiaoying, LI Yong, ZHOU Shuqing, et al. Analysis and evaluation of nutritional composition in two freshwater fingersnails[J]. Food Science, 2010, 31(13): 276-279.
    [26]
    MISAKO K, ATSUSHI O, YOICHI U. Taste enhancements between various amino acids and IMP[J]. Chemical Senses,2002(8):739.
    [27]
    黄艳球, 杨发明, 秦小明, 等. 不同养殖区香港牡蛎的化学组成及特征气味成分分析[J]. 食品科学,2019,40(14):236−242. [HUANG Yanqiu, YANG Faming, QIN Xiaoming, et al. Chemical composition and characteristic odorans of oyster (Crassostrea hongkongensis) from different culture areas[J]. Food Science,2019,40(14):236−242. doi: 10.7506/spkx1002-6630-20180822-239

    HUANG Yanqiu, YANG Faming, QIN Xiaoming, et al. Chemical composition and characteristic odorans of oyster (Crassostrea hongkongensis) from different culture areas[J]. Food Science, 2019, 40(14): 236-242. doi: 10.7506/spkx1002-6630-20180822-239
    [28]
    ZHUANG G Q, LI B, GUO H Y, et al. Molecular cloning and characterization of P5CS gene from Jatropha curcas L[J]. African Journal of Biotechnology,2011,10(66):14803−14811.
    [29]
    OYEDOTUN K S, LEMIRE B D. The quaternary structure of theSaccharomyces cerevisiae succinate dehydrogenase: Homology modeling, cofactor docking, and molecular dynamics simulation studies[J]. Journal of Biological Chemistry,2004,279(10):9424−9431. doi: 10.1074/jbc.M311876200
    [30]
    BACCA H, HUVET A, FABIOUX C, et al. Molecular cloning and seasonal expression of oyster glycogen phosphorylase and glycogen synthase genes[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,2005,140(4):635−646. doi: 10.1016/j.cbpc.2005.01.005
    [31]
    BECKER W. Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control[J]. Cell Cycle,2012,11(18):3389−3394. doi: 10.4161/cc.21404
    [32]
    SONG W J, SONG E A, JUNG M S, et al. Phosphorylation and inactivation of glycogen synthase kinase 3β (GSK3β) by dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A)[J]. Journal of Biological Chemistry,2015,290(4):2321−2333. doi: 10.1074/jbc.M114.594952
    [33]
    刘佳, 李传飞, 宁波, 等. 内质网应激通过SCAP/SREBP-1c调控L02肝细胞脂质合成代谢[J]. 第三军医大学学报,2015,37(5):443−448. [LIU Jia, LI Chuanfei, NING Bo, et al. Endoplasmic reticulum stress regulates lipid synthesis metabolism in L02 hepatocytes through SCAP/SREBP-1c[J]. Journal of Third Military Medical University,2015,37(5):443−448.

    LIU Jia, LI Chuanfei, NING Bo, et al. Endoplasmic reticulum stress regulates lipid synthesis metabolism in L02 hepatocytes through SCAP/SREBP-1c[J]. Journal of Third Military Medical University, 2015, 37(5): 443-448.
    [34]
    房殿亮. Insig-1/SCAP/SREBP-1c通路对内质网应激下肝细胞脂质代谢的影响[D]. 重庆: 重庆医科大学, 2013

    FANG Dianliang. Effect of Insig-1/SCAP/SREBP-1c signal on lipid metabolism in hepatocytes under endoplasmic reticulum stress[D]. Chongqing: Chongqing Medical University, 2013.
    [35]
    徐丽. 牛SREBP1基因与牛肉肌内脂肪沉积的研究[D]. 北京: 中国农业科学院, 2013

    XU Li. Study on beef intramuscular fat deposition of SREBP1 gene in cattle[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
    [36]
    杨林辉. TNF-α对肝细胞脂肪变性模型SCAP-SREBP-1c脂质合成通路的影响[D]. 重庆: 第三军医大学, 2006

    YANG Linhui. Effect of TNF-α on the SCAP-SREBP-1c pathway of lipid synthesis in a model of hepatocyte steatosis[D]. Chongqing: Chongqing Medical University, 2006.
    [37]
    王媛媛. SCAP超表达对细胞脂代谢的影响及其相关可能机制研究[D]. 重庆: 重庆医科大学, 2010

    WANG Yuanyuan. Construction of pcDNA-SM22-SCAP(D443N) eukaryotic expression vector and its investigation of function[D]. Chongqing: Chongqing Medical University, 2010.
    [38]
    单毓娟, 孙长颢. 氨基酸对基因表达的调控作用及其机制研究进展[J]. 营养健康新观察,2004(4):27−31. [SHAN Yujuan, SUN Changhao. Regulation of amino acids on gene expression and its mechanism[J]. New Observations on Nutrition and Health,2004(4):27−31.

    SHAN Yujuan, SUN Changhao. Regulation of amino acids on gene expression and its mechanism[J]. New Observations on Nutrition and Health, 2004(4): 27-31.
  • Related Articles

    [1]CHEN Jiaqi, LI Jialin, ZHAO Jichun, LI Honghai, MING Jian. Effects of Different Drying Methods on the Volatile Substances of Dictyophora rubrovolvata Based on HS-SPME-GC-MS and HS-GC-IMS[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024070074
    [2]YAN Chen, ZHANG Yunbin, XU Qijie, ZHOU Xuxia, DING Yuting, WANG Wenjie. Effect of Storage Positions on the Volatile Flavor Compounds (VFCs) of Paddy Rice through Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) Analysis[J]. Science and Technology of Food Industry, 2023, 44(17): 375-382. DOI: 10.13386/j.issn1002-0306.2022120073
    [3]LÜ Xiang, GAO Tiantian, LIU Wei, ZHANG Juhua. Analysis of Volatile Aroma Components of Navel Orange Wine Produced by Mixed Fermentation of Non Saccharomyces cerevisiae and Saccharomyces cerevisiae Based on GC-IMS[J]. Science and Technology of Food Industry, 2023, 44(17): 139-148. DOI: 10.13386/j.issn1002-0306.2022100310
    [4]LIANG Yi, FENG Tao, WANG Huatian, SONG Shiqing, SUN Min, YUE Heng, YAO Lingyun. Characterization of Aroma Volatiles in Three Sundried Ulva spp. by GC-MS and Sensory Evaluation[J]. Science and Technology of Food Industry, 2023, 44(15): 283-291. DOI: 10.13386/j.issn1002-0306.2022080353
    [5]GUO Yahong, TONG Litao, WANG Lili, FAN Bei, YANG Xijuan, ZHANG Shuo, SUN Jing, WANG Fengzhong, LIU Liya. GC-IMS-Based Analysis of the Effect of Frying Temperature on Volatile Flavor Substances in Highland Barley Tsampa Flour[J]. Science and Technology of Food Industry, 2023, 44(14): 326-335. DOI: 10.13386/j.issn1002-0306.2022100182
    [6]LIU Lili, YANG Hui, JING Xiong, ZHANG Yafang, XU Chen, YAN Zongke, QI Yaohua. Analysis of Volatile Compounds in Aged Fengxiang Crude Baijiu Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(23): 318-327. DOI: 10.13386/j.issn1002-0306.2022040054
    [7]TAN Yan, WANG Guoqing, WU Jinzhu, CHEN GAN, ZHOU Aimei. Analysis of Volatile Flavour Components in Four Pomelo Peel Essential Oils Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2021, 42(15): 256-268. DOI: 10.13386/j.issn1002-0306.2020090041
    [8]LIU Xueyan, WANG Juan, PENG Yun, LV Caiyou, LI Ruoyu. Volatile Component Analysis of Sun-dried Green Tea in Menghai County Based on GC-IMS[J]. Science and Technology of Food Industry, 2021, 42(14): 233-240. DOI: 10.13386/j.issn1002-0306.2020080295
    [9]CHEN Xiaoai, CAI Huitian, LIU Jingyi, TANG Niang, CHEN Shuxi, ZHOU Aimei. Analysis of Volatile Components in Laoxianghuang During Fermentation by Electronic Nose, GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2021, 42(12): 70-80. DOI: 10.13386/j.issn1002-0306.2020100170
    [10]SUN Xiao-jian, YU Peng-fei, LI Chen-chen, LIU Chang-jin. Analysis of Volatile Components in Vacuum Freeze-dried Toona sinensis by HS-SPME Combined with GC-MS[J]. Science and Technology of Food Industry, 2019, 40(16): 196-200. DOI: 10.13386/j.issn1002-0306.2019.16.033
  • Cited by

    Periodical cited type(3)

    1. 周法婷,李迪,李开凤,蒋忠桂,魏蝶,丛之慧,陈井生,顾欣,肖国生. 基于网络药理学及分子对接探讨猪胶原血管紧张素转换酶抑制肽的降压机制. 食品与发酵工业. 2024(18): 217-224 .
    2. 江文婷,陈旭,蔡茜茜,杨傅佳,黄丹,黄建联,汪少芸. 基于分子对接技术研究鱼源抗冻多肽与鱼肌球蛋白的相互作用. 食品工业科技. 2022(20): 29-38 . 本站查看
    3. 陈姣,肖静,陈林,刘隆臻. 基于新型冠状病毒3CL~(pro)结构的小肽抑制剂虚拟筛选. 江苏海洋大学学报(自然科学版). 2021(03): 69-75 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (233) PDF downloads (21) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return