CHEN Caiwen, LI Dandan, TAO Yang, et al. Effect of Enzyme Extrusion on Structure and Physicochemical Properties of Wheat Starch[J]. Science and Technology of Food Industry, 2022, 43(15): 50−57. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090360.
Citation: CHEN Caiwen, LI Dandan, TAO Yang, et al. Effect of Enzyme Extrusion on Structure and Physicochemical Properties of Wheat Starch[J]. Science and Technology of Food Industry, 2022, 43(15): 50−57. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090360.

Effect of Enzyme Extrusion on Structure and Physicochemical Properties of Wheat Starch

More Information
  • Received Date: October 10, 2021
  • Available Online: May 25, 2022
  • This study aimed to investigate the effects of enzyme extrusion on the structural and physicochemical properties of wheat starch. The mixture of α-amylase (0%, 0.1%, 0.2%, 0.5%, 1% and 2%) and wheat starch were prepared and then extruded. After extrusion, the structural and physiochemical properties of wheat starch were analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometer (XRD), and rapid viscosity analyzer (RVA). The results showed that no significant difference in bulk density were observed among all treatments (P>0.05). With the increase of enzyme concentration, the water absorption index was decreased, and the hydration index was gradually increased. The gelatinization degree of starch was largely increased after extrusion, which indicated that the starch was almost completely gelatinized. SEM images suggested that the structure of starch granules was completely destroyed and the more extensive destruction was observed with the addition of enzyme. XRD patterns indicated that the relative crystallinity decreased from 17.52% of the native starch to 10.29% of the extruded sample with 2% enzyme. DSC results showed that the gelatinization enthalpy of wheat starch decreased significantly after extrusion (P<0.05). The lowest enthalpy was 0.24 J/g for extruded sample without α-amylase, while the enthalpy increased to about 2.5 J/g with the addition of α-amylase to 2%. This study explored the mechanism underlying the effect of enzyme extrusion on the structural and physicochemical properties of starch, which contributes to providing theoretical guides for the applications of enzyme extrusion in starch-based foods.
  • [1]
    刘少广. 预糊化小麦粉的特性及应用研究[D]. 武汉: 武汉工业学院, 2012.

    LIU S G. Study on characteristics and application of pre-gelatinized wheat flour[D]. Wuhan: Wuhan Institute of Technology, 2012.
    [2]
    肖志刚, 邵晨, 杨柳, 等. 淀粉改性方法的研究现状及进展[J]. 农产品加工,2020(3):81−84,88. [XIAO Z G, SHAO C, YANG L, et al. Research status and progress trend of starch modification[J]. Farm Products Processing,2020(3):81−84,88.

    XIAO Z G, SHAO C, YANG L, et al. Research status and progress trend of starch modification[J]. Farm Products Processing, 2020(3): 81-84, 88.
    [3]
    SINGH J, KAUR L, MCCATHRY O J. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-a review[J]. Food Hydrocolloids, 2007, 21: 1−22.
    [4]
    张隋鑫, 曹勇, 许秀颖, 等. 预糊化淀粉的制备、性质及应用[J]. 食品科技,2019,44(3):252−255. [ZHANG S X, CAO Y, XU X Y, et al. Production, properties and applications of pre-gelatinazed starch[J]. Food Science and Technology,2019,44(3):252−255.

    ZHANG S X, CAO Y, XU X Y, et al. Production, properties and applications of pre-gelatinazed starch[J]. Food Science and Technology, 2019, 44(3): 252-255.
    [5]
    金征宇, 李佳欣, 周星. 冷水可溶淀粉的物理法制备及应用研究进展[J]. 食品科学技术学报,2021,39(1):1−12. [JIN Z Y, LI J X, ZHOU X. Research progress on physical preparation and application of cold-water-soluble starch[J]. Journal of Food Science and Technology,2021,39(1):1−12. doi: 10.12301/j.issn.2095-6002.2021.01.001

    JIN Z Y, LI J X, ZHOU X. Research progress on physical preparation and application of cold-water-soluble starch[J]. Journal of Food Science and Technology, 2021, 39(1): 1-12. doi: 10.12301/j.issn.2095-6002.2021.01.001
    [6]
    CAO Z Q, CAO Y M, CAO Z G, et al. The research progress of pre-gelatinized starch[J]. Popular Science and Technology,2016,18(1):31−34.
    [7]
    CHUANG G C C, YEH A I. Effect of screw profile on residence time distribution and starch gelatinization of rice flour duringsingle screw extrusion cooking[J]. Journal of Food Engineering,2004,63(1):21−31. doi: 10.1016/S0260-8774(03)00278-4
    [8]
    MOSCICKI L. Extrusion cooking: Principles and practice[J]. Encyclopedia of Food and Health,2016:576−580.
    [9]
    FRANKLYN Z, JOHANNES B, LESLIE V, et al. Physical, chemical and nutritional characteristics of puffed quinoa[J]. International Journal of Food Science & Technology,2020,55(1):313−322.
    [10]
    TOBIAS A, MOHAMMAD R K, JONATHAN C, et al. Modification of poly (lactic) acid by reactive extrusion and its melt blending with acrylonitrile-butadiene-styrene[J]. Polymer International,2020,69(9):794−803. doi: 10.1002/pi.6014
    [11]
    GOVINDASAMY S, CAMPANELLA O H, OATES C G. Enzymatic hydrolysis and saccharification optimisation of sago starch in a twin-screw extruder[J]. Journal of Food Engineering,1997,32:427−446.
    [12]
    LI J P, RASHED M M A, DENG L, et al. Thermostable and mesophilic alpha-amylase: Effects on wheat starch physicochemical properties and their applications in extruded noodles[J]. Journal of Cereal Science,2019,87:248−257. doi: 10.1016/j.jcs.2019.04.013
    [13]
    MESA-STONESSTREET N J, ALAVIL S, GWIRTZ J. Extrusion-enzyme liquefaction as a method for producing sorghum protein concentrates[J]. Journal of Food Engineering,2012,108(2):365−375.
    [14]
    BANVILET G, GATT E, BELGACEM N, et al. Cellulose fibers deconstruction by twin-screw extrusion with in situ enzymatic hydrolysis via bioextrusion[J]. Bioresource Technology,2021:327. doi: 10.1016/j.biortech.2021.124819
    [15]
    REINIKAINEN T, SUORTTI J, OLKKU, et al. Extrusion cooking in enzymatic liquefaction of wheat starch[J]. Starch-Stä rke,1986,38:20−26.
    [16]
    GOVINDASAMY S, CAMPANELLA O H, OATES C G. Enzymatic hydrolysis of sago starch in a twin-screw extruder[J]. Food Eng,1997,32:403−426. doi: 10.1016/S0260-8774(97)00017-4
    [17]
    LI H, JIAO A, XU X, et al. Simultaneous saccharification and fermentation of broken rice: an enzymatic extrusion liquefaction pretreatment for Chinese rice wine production[J]. Bioprocess Biosyst Eng,2013,36:1141−1148. doi: 10.1007/s00449-012-0868-0
    [18]
    马永轩, 张名位, 张瑞芬, 等. 高温α-淀粉酶-挤压膨化耦合处理对全谷物糙米粉品质的影响[J]. 食品科学技术学报,2020,38(1):111−116. [MA Y X, ZHANG M W, ZHANG R F, et al. Effect of thermostable α-amylase assisted extrusion treatment on quality properties of whole brown rice flour[J]. Journal of Food Science and Technology,2020,38(1):111−116. doi: 10.3969/j.issn.2095-6002.2020.01.015

    MA Y X, ZHANG M X, ZHANG R F, et al. Effect of thermostable α-amylase assisted extrusion treatment on quality properties of whole brown rice flour[J]. Journal of Food Science and Technology, 2020, 38(1): 111-116. doi: 10.3969/j.issn.2095-6002.2020.01.015
    [19]
    刘磊, 邱婷婷, 赵志浩, 等. 预酶解-挤压膨化工艺改善玉米全粉冲调分散性[J]. 现代食品科技,2018,34(10):141−146, 170. [LIU L, QIU T T, ZHAO Z H, et al. Extrusion with enzyme pretreatment improves dispersibility of whole corn flour[J]. Modern Food Science and Technology,2018,34(10):141−146, 170.

    LIU L, QIU T T, ZHAO Z H, et al. Extrusion with enzyme pretreatment improves dispersibility of whole corn flour[J]. Modern Food Science and Technology, 2018, 34(10): 141-146, 170.
    [20]
    LI J P, JIAO A Q, RASHED M M A, et al. Effect of thermostable-amylase addition on producing the porous-structured noodles using extrusion treatment[J]. Journal of Food Science,2018,83(2):332−339. doi: 10.1111/1750-3841.14010
    [21]
    赵淑娜, 焦爱权, 杨月月, 等. 加酶挤压对大麦粉理化性质及全大麦啤酒酿造特性的影响[J]. 食品与发酵工业,2021,47(15):63−69. [ZHAO S N, JIAO A Q, YANG Y Y, et al. Effect of enzyme extrusion on characteristics of barley flour and whole-barley beer brewing[J]. Food and Fermentation Industries,2021,47(15):63−69.

    ZHAO S N, JIAO A Q, YANG Y Y, et al. Effect of enzyme extrusion on characteristics of barley flour and whole-barley beer brewing[J]. Food and Fermentation Industries, 201, 47(15): 63-69.
    [22]
    LI D, YANG N, ZHOU X, et al. Characterization of acid hydrolysis of granular potato starch under induced electric field[J]. Food Hydrocolloids,2017,71:198−206.
    [23]
    LI D, YANG N, JIN Y, et al. Changes in crystal structure and physicochemical properties of potato starch treated by induced electric field[J]. Carbohydrate Polymers,2016,153:535−541.
    [24]
    中华人民共和国国家质量监督检验检疫局, 中国国家标准化管理委员会. GB/T 24853—2010 小麦、黑麦及其粉类和淀性测定快速粘度仪法[S]. 北京: 中国标准出版社, 2010.

    State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. GB/T 24853—2010 General pasting method for wheat or rye flour or starch-using the rapid visco analyzer[S]. Beijing: China Standards Press, 2010.
    [25]
    KUO C H, SHIEH C J, HUANG S M, et al. The effect of extrusion puffing on the physicochemical properties of brown rice used for saccharification and Chinese rice wine fermentation[J]. Food Hydrocolloids,2019,94:363−370. doi: 10.1016/j.foodhyd.2019.03.040
    [26]
    BRYANT R J, KADAN R S, CHAMPAGNE E T, et al. Functional and digestive characteristics of extruded rice flour[J]. Cereal Chemistry,2001,78(2):131−137. doi: 10.1094/CCHEM.2001.78.2.131
    [27]
    徐恩波. 加酶挤压大米品质调控机理及其黄酒应用研究[D]. 无锡: 江南大学, 2019.

    XU E B. Regulation mechanism of enzymatically extruded rice quality and its application in Chinese rice wine[D]. Wuxi: Jiangnan University, 2019.
    [28]
    谢天, 孙洪蕊, 康立宁, 等. 双螺杆挤压对玉米重组米理化特性及品质特性的影响[J]. 食品科学,2019,40(17):183−189. [XIE T, SUN H R, KANG L N, et al. Effect of twin-screw extrusion on physicochemical properties and qual characteristics of corn flour[J]. Food Science,2019,40(17):183−189. doi: 10.7506/spkx1002-6630-20180714-180

    XIE T, SUN H R, KANG L N, et al. Effect of twin-screw extrusion on physicochemical properties and qual characteristics of corn flour[J]. Food Science, 2019, 40(17): 183-189. doi: 10.7506/spkx1002-6630-20180714-180
    [29]
    PUNIA S. Barley starch: Structure, properties and in vitro digestibility-a review[J]. International Journal of Biological Macromolecules,2020,155:868−875. doi: 10.1016/j.ijbiomac.2019.11.219
    [30]
    马成业, 范玉艳, 于双双, 等. 挤压剪切活化对添加耐高温α-淀粉酶脱胚玉米淀粉结构和理化特性的影响[J]. 食品科学,2018,39(15):31−37. [MA C Y, FAN Y Y, YU S S, et al. Physicochemical and structural properties of native, extruded and enzymatic extruded degerminated corn starch[J]. Food Science,2018,39(15):31−37. doi: 10.7506/spkx1002-6630-201815005

    MA C Y, FAN Y Y, YU S S, et al. Physicochemical and structural properties of native, extruded and enzymatic extruded degerminated corn starch[J]. Food Science, 2018, 39(15): 31-37. doi: 10.7506/spkx1002-6630-201815005
    [31]
    CONTRERAS-GALLEGOS E, DOMÍNGUEZ-PACHECO F A, HERNÁNDEZ-AGUILAR C, et al. Study of thermal aural properties of starch granules from different maize genotypes[J]. Food Biophysics,2015,10(1):1−6. doi: 10.1007/s11483-014-9382-z
    [32]
    FROST K, KAMINSKI D, KIRWAN G, et al. Crystallinity and structure of starch using wide angle X-ray scattering[J]. Carbohydrate Polymers,2009,78(3):543−548. doi: 10.1016/j.carbpol.2009.05.018
    [33]
    ZOBEL H F. Starch crystal transformations and their industrial importance[J]. Starch-Stä rke,1988,40(1):1−7.
    [34]
    WU Y, DU X, GE H, et al. Preparation of microporous starch by glucoamylase and ultrasound[J]. Starch-Stä rke,2011,63(4):217−225.
    [35]
    CHEN Y S, HUANG S R, TANG Z F, et al. Structural changes of cassava starch granules hydrolyzed by a mixture of α-amylase and glucoamylase[J]. Carbohydrate Polymers,2011,85(1):272−275. doi: 10.1016/j.carbpol.2011.01.047
    [36]
    于双双, 张东亮, 陈善峰, 等. 脱胚玉米与加酶和不加酶挤压脱胚玉米淀粉颗粒结构和热特性研究[J]. 食品工业科技,2017,38(11):71−75. [YU S S, ZHANG D L, CHEN S F, et al. Research on granule structures and thermal properties of degerminated corn and extruded degerminated corn with enzyme and without enzyme[J]. Science and Technology of Food Industry,2017,38(11):71−75.

    YU S S, ZHANG D L, CHEN S F, et al. Research on granule structures and thermal properties of degerminated corn and extruded degerminated corn with enzyme and without enzyme[J]. Science and Technology of Food Industry, 2017, 38(11): 71-75.
    [37]
    ZHAO A Q, YU L, YANG M, et al. Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch[J]. Food Hydrocolloids,2018,83:465−472. doi: 10.1016/j.foodhyd.2018.04.041
    [38]
    吴文琪. 加酶挤压联合酶解法制备多孔淀粉及其在甜橙油粉末化中的应用[D]. 无锡: 江南大学, 2020.

    WU W Q. Preparation of porous starch by bioextrusion combined with enzymolysis and its application in microencapsulation of sweet orange oil[D]. Wuxi: Jiangnan University, 2020.
    [39]
    WANG S J, COPELAND L. Effect of acid hydrolysis on starch structure and functionality: A review[J]. Critical Reviews in Food Science and Nutrition,2015,55(8):1079−1095.
    [40]
    方浩标, 郑经绍, 余宏达, 等. 挤压膨化对紫糙米粉营养品质及理化性质的影响[J]. 食品工业科技, 2021, 42(19): 70−77.

    FANG H B, ZHENG J S, YU H D, et al. Effect of extrusion process on the nutritious and physicochemical proper of purple brown rice flour [J]. Science and Technology of Food Industry, 2021, 42(19): 70−77.
    [41]
    MIAO M, ZHANG T, JIANG B. Characterisations of kabuli and desi chickpea starches cultivated in China[J]. Food Chemistry,2009,113(4):1025−1032. doi: 10.1016/j.foodchem.2008.08.056
    [42]
    ZAVAREZE E D R, DIAS A R G. Impact of heat-moisture treatment and annealing in starches: A review[J]. Carbohydrate Polymers,2011,83(2):317−328. doi: 10.1016/j.carbpol.2010.08.064
    [43]
    JONGSUTJSRITTAM O, CHAROENREIN S. The effect of moisture content on physicochemical properties of extruded waxy and non-waxy rice flour[J]. Carbohydrate Polymers,2014,114:133−140. doi: 10.1016/j.carbpol.2014.07.074
  • Cited by

    Periodical cited type(6)

    1. 任书凝,宋永程,李缘,邢亚阁,毕秀芳. 超高压和热处理对沙棘-哈密瓜复合果汁品质的影响. 食品与发酵工业. 2023(02): 195-201 .
    2. 刘彩红,王雪,王静,王新宇,李慧,毕莹. 正丁醇对冷藏哈密瓜果实脯氨酸代谢的调控. 中国食品学报. 2023(05): 281-290 .
    3. 苏常红,寻雅雯,宋子豪. CaCl_2、甜菜碱、5-氨基乙酰丙酸提升番茄耐低温弱光研究. 山西大学学报(自然科学版). 2023(05): 1217-1226 .
    4. 毕莹,李慧,马鑫,王新宇,王雪,王富鑫,许文昌,王静. 不同品种哈密瓜果实采后品质与耐冷性关系分析. 食品科技. 2023(10): 27-34 .
    5. 杨慧,吴洪斌,贾文婷,刘战霞. 基于品质分析的哈密瓜真空冷冻-变温压差膨化联合干燥工艺研究. 保鲜与加工. 2022(05): 56-62 .
    6. 刘彩红,王雅琪,李乾,王雪,古丽丹·塔勒达吾,木合塔尔江·艾海提,冯作山,王静. 正丁醇对采后哈密瓜冷害及活性氧代谢的影响. 果树学报. 2021(11): 1984-1994 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (197) PDF downloads (22) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return