WU Haitao, ZHANG Yiwei. Comparative Study on Processing Characteristics of Linden Honey Polysaccharide and Multifloral Honey Polysaccharide[J]. Science and Technology of Food Industry, 2022, 43(14): 323−328. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090359.
Citation: WU Haitao, ZHANG Yiwei. Comparative Study on Processing Characteristics of Linden Honey Polysaccharide and Multifloral Honey Polysaccharide[J]. Science and Technology of Food Industry, 2022, 43(14): 323−328. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090359.

Comparative Study on Processing Characteristics of Linden Honey Polysaccharide and Multifloral Honey Polysaccharide

More Information
  • Received Date: October 10, 2021
  • Available Online: May 17, 2022
  • The purpose of this study was to study the processing characteristics of different honey polysaccharides and explore the effects of different kinds on the processing characteristics of honey polysaccharides. Linden honey polysaccharides (LHP) and multifloral honey polysaccharides (MHP) were prepared. The processing characteristics of polysaccharides honey were studied by thermodynamic and rheological analysis. The results showed that the weight losses of LHP and MHP were 85.05% and 81.3%, respectively. The thermal degradation temperatures of LHP and MHP were 236.7 and 322 ℃, respectively. Both LHP and MHP showed a wide exothermic reaction peak at 75 and 72 ℃, respectively. The viscosity of LHP and MHP remains unchanged at 1.3 and 1.2 mPa·s at high shear rates, respectively. The water holding capacity of LHP and MHP was 1.6 and 0.4 g water/g, respectively. The oil holding capacity of LHP and MHP was 18.8 and 11.4 g oil/g, respectively. It was suggested that honey polysaccharides had better heat resistance and viscosity. It could provide theoretical support for the application of honey polysaccharides in the development of functional foods and natural medicines.
  • [1]
    ZHENG H, PERREAU J, POWELL J E, et al. Division of labor in honey bee gut microbiota for plant polysaccharide digestion[J]. Proceedings of the National Academy of Sciences,2019,116(51):25909−25916. doi: 10.1073/pnas.1916224116
    [2]
    VALVERDE S, ARES A M, STEPHEN ELMORE J, et al. Recent trends in the analysis of honey constituents[J]. Food Chemistry,2022,116(51):25909−25916.
    [3]
    颜秋燕. 党参和党参蜂蜜中主要成分和活性物质的研究[D]. 杭州: 浙江工商大学, 2020.

    YAN Qiuyan. Study on main components and active substances in Codonopsis pilosula and Codonopsis pilosula honey[D]. Hangzhou: Zhejiang Gongshang University, 2020.
    [4]
    SIDDIQUI I R. Constitution of an arabinogalactomannan from honey[J]. Canadian Journal of Chemistry,1965,43(2):421−425. doi: 10.1139/v65-055
    [5]
    TONKS A J, DUDLEY E, PORTER N G, et al. A 5.8-kDa component of manuka honey stimulates immune cells via TLR4[J]. Journal of Leukocyte Biology,2007,82(5):1147−1155. doi: 10.1189/jlb.1106683
    [6]
    MEGHERBI M, HERBRETEAU B, FAURE R, et al. Polysaccharides as a marker for detection of corn sugar syrup addition in honey[J]. Journal of Agricultural and Food Chemistry,2009,57(6):2105−2111. doi: 10.1021/jf803384q
    [7]
    SASAKI M, TAKAGI A, SASAKI D, et al. Characteristics and function of an extracellular polysaccharide from a green alga Parachlorella[J]. Carbohydrate Polymers,2021,254:117252. doi: 10.1016/j.carbpol.2020.117252
    [8]
    HADIDI M, AMOLI P I, JELYANI A Z, et al. Polysaccharides from pineapple core as a canning by-product: Extraction optimization, chemical structure, antioxidant and functional properties[J]. International Journal of Biological Macromolecules,2020,163:2357−2364. doi: 10.1016/j.ijbiomac.2020.09.092
    [9]
    JI X, HOU C, YAN Y, et al. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill. ) fruit[J]. International Journal of Biological Macromolecules,2020,149:1008−1018. doi: 10.1016/j.ijbiomac.2020.02.018
    [10]
    BAO H, YOU S, CAO L, et al. Chemical and rheological properties of polysaccharides from fruit body of Auricularia auricular-judae[J]. Food Hydrocolloids,2016,57:30−37. doi: 10.1016/j.foodhyd.2015.12.031
    [11]
    TRIGUI I, YAICH H, SILA A, et al. Physicochemical properties of water-soluble polysaccharides from black cumin seeds[J]. International Journal of Biological Macromolecules,2018,117:937−946. doi: 10.1016/j.ijbiomac.2018.05.202
    [12]
    AM S. Removal of proteins-Sevag method[J]. Methods Carbohydr Chem,1965:5.
    [13]
    DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical chemistry,1956,28(3):350−356. doi: 10.1021/ac60111a017
    [14]
    Yuan Y, Xu X, Jing C, et al. Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities[J]. Carbohydrate polymers,2018,181:902−910. doi: 10.1016/j.carbpol.2017.11.061
    [15]
    王森. 扁桃胶多糖组分鉴定与加工特性变化规律研究[D]. 长沙: 中南林业科技大学, 2010.

    WANG Sen. Study on component identification and processing characteristics of almond gum polysaccharide [D]. Changsha: Central South University of Forestry Science and Technology, 2010
    [16]
    ROZI P, ABUDUWAILI A, MUTAILIFU P, et al. Sequential extraction, characterization and antioxidant activity of polysaccharides from Fritillaria pallidiflora Schrenk[J]. International Journal of Biological Macromolecules,2019,131:97−106. doi: 10.1016/j.ijbiomac.2019.03.029
    [17]
    Hu L, Liu R, Wu T, et al. Structural properties of homogeneous polysaccharide fraction released from wheat germ by hydrothermal treatment[J]. Carbohydrate Polymers,2020,240:116238. doi: 10.1016/j.carbpol.2020.116238
    [18]
    NUERXIATI R, ABUDUWAILI A, MUTAILIFU P, et al. Optimization of ultrasonic-assisted extraction, characterization and biological activities of polysaccharides from Orchis chusua D. Don (Salep)[J]. Journal of Biological Macromolecules,2019,141:431−443. doi: 10.1016/j.ijbiomac.2019.08.112
    [19]
    JIANG L, WANG W, WEN P, et al. Two water-soluble polysaccharides from mung bean skin: Physicochemical characterization, antioxidant and antibacterial activities[J]. Food Hydrocolloids,2020,100:105412. doi: 10.1016/j.foodhyd.2019.105412
    [20]
    TAHMOUZI S, NEJAT M R S. New infertility therapy effects of polysaccharides fromAlthaea officinalis leaf with emphasis on characterization, antioxidant and anti-pathogenic activity[J]. International Journal of Biological Macromolecules,2020,145:777−787. doi: 10.1016/j.ijbiomac.2019.12.224
    [21]
    GOTTLIEB H E, KOTLYAR V, NUDELMAN A. NMR chemical shifts of common laboratory solvents as trace impurities[J]. Journal of Organic Chemistry,1997,62(21):7512−7515. doi: 10.1021/jo971176v
    [22]
    YANG H, BAI J, MA C, et al. Degradation models, structure, rheological properties and protective effects on erythrocyte hemolysis of the polysaccharides from Ribes nigrum L[J]. International Journal of Biological Macromolecules,2020,165:738−746. doi: 10.1016/j.ijbiomac.2020.09.093
    [23]
    WANG L, ZHANG B, XIAO J, et al. Physicochemical, functional, and biological properties of water-soluble polysaccharides fromRosa roxburghii Tratt fruit[J]. Food Chemistry,2018,249:127−135. doi: 10.1016/j.foodchem.2018.01.011
    [24]
    SILA A, BAYAR N, GHAZALA I, et al. Water-soluble polysaccharides from agro-industrial by-products: functional and biological properties[J]. International Journal of Biological Macromolecules,2014,69:236−243. doi: 10.1016/j.ijbiomac.2014.05.052
    [25]
    李洁, 郭玉蓉, 窦姣, 等. 不同方法提取苹果肉渣果胶的流变学特性研究[C]//现代果业标准化示范区创建暨果树优质高效生产技术交流会论文汇编, 2015.

    LI Jie, GUO Yurong, DOU Jiao, et al. Study on rheological properties of pectin extracted from apple pulp residue by different methods [C]//Compilation of papers on the establishment of modern fruit industry standardization demonstration area and fruit tree high-quality and efficient production technology exchange, 2015
    [26]
    郝正祺. 绣球菌多糖结构鉴定, 流变凝胶学特性及其抗氧化和免疫功能的研究[D]. 晋中: 山西农业大学, 2018.

    HAO Zhengqi. Structural identification, rheological and gel characteristics, antioxidant and immune functions of hydrangea polysaccharides [D]. Jinzhong: Shanxi Agricultural University, 2018.
    [27]
    冯蕾. 决明子水溶性多糖的精细结构、构象特征及其流变行为研究 [D]. 南昌: 南昌大学, 2018.

    FENG Lei. Study on fine structure, conformational characteristics and rheological behavior of water-soluble polysaccharides from cassia seed [D]. Nanchang: Nanchang University, 2018
    [28]
    WANG P, ZHAO S, YANG B, et al. Anti-diabetic polysaccharides from natural sources: A review[J]. Carbohydrate Polymers,2016,148:86−97. doi: 10.1016/j.carbpol.2016.02.060
  • Cited by

    Periodical cited type(6)

    1. 李杰,李霜,张鹏霞,祝丽玲,周健,孙雪微,宋丽新. 发酵食品中具有潜在降尿酸功能乳酸菌的筛选及特性分析. 食品研究与开发. 2024(07): 174-180 .
    2. 于鑫迪,刘静雅,任秀梅,陈炼红. 功能性牦牛酸奶制备、贮藏期内品质及降嘌呤活性研究. 食品工业科技. 2024(21): 20-29 . 本站查看
    3. 莫星忧,欧仕益,毋福海,吴帅,吴慧,李倩. 膳食对高尿酸血症的影响及控制研究进展. 农产品加工. 2024(22): 100-104 .
    4. 陈天琦,屈墨涵,张春红,李丹,尹雪斌. 食药同源对防治慢性代谢性疾病的作用及功能农业解决方案. 肥料与健康. 2024(06): 86-90 .
    5. 付喜华,韩四海,刘建学,李佩艳,郭金英,罗登林,岳崇慧. 葡萄蒸馏酒对高尿酸血症模型小鼠肠道菌群的调节作用. 食品科学. 2023(07): 161-168 .
    6. 陈聪聪,周全. 基于网络药理学与分子对接探讨四妙丸“异病同治”强直性脊柱炎和高尿酸血症的作用机制. 河南中医. 2023(10): 1534-1542 .

    Other cited types(13)

Catalog

    Article Metrics

    Article views (202) PDF downloads (17) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return