CHANG Hong, WANG Shuang, ZHOU Jiahua, et al. Effect of in Vitro Simulated Digestion on Flavonoid and Reducing Ability of Fresh-cut Apple Residue[J]. Science and Technology of Food Industry, 2022, 43(20): 39−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090182.
Citation: CHANG Hong, WANG Shuang, ZHOU Jiahua, et al. Effect of in Vitro Simulated Digestion on Flavonoid and Reducing Ability of Fresh-cut Apple Residue[J]. Science and Technology of Food Industry, 2022, 43(20): 39−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090182.

Effect of in Vitro Simulated Digestion on Flavonoid and Reducing Ability of Fresh-cut Apple Residue

More Information
  • Received Date: September 14, 2021
  • Available Online: August 09, 2022
  • The in vitro simulation of gastrointestinal digestion was performed on the flavonoid of fresh-cut apple pomace residue to determine the changes of flavonoids content and their reducing ability during the simulated digestion process, in order to provide reference values for the further development and utilization of flavonoids in fresh-cut apple peels and pomace. The results showed that flavonoids content and reducing ability during the gastric digestion simulation increased significantly in 2 h compared with the undigested group(P<0.05). Pepsin and sour chemical environment had a facilitating effect on both the release and reduction ability of flavonoids. During the intestinal digestion simulation, the flavonoids obviously increased during 2~3 h of digestion compared with the undigested group(P<0.05), and the reducing ability also significantly increased. The flavonoid content and reducing ability of intestinal juice digestion group (with pancreatic enzyme) were higher than that of blank group (without pancreatic enzyme), the pancreatic enzyme also played a positive enhancing effect on both the release of flavonoids and their reducing ability.
  • [1]
    VRHOVSEK U, RIGO A, TONON D, MATTIVI F. Quantitation of polyphenols in different apple varieties[J]. Journal of Agricultural and Food Chemistry,2004,52(21):6532−6538. doi: 10.1021/jf049317z
    [2]
    唐先谱, 李喜宏, 张彪, 等. 复合保鲜剂对鲜切苹果贮藏品质影响的研究[J]. 中国食品添加剂,2018(2):138−143. [TANG X P, LI X H, ZHANG B, et al. Research on the effect of compound preservatives on the storage quality of fresh cut apple[J]. China Food Additives,2018(2):138−143. doi: 10.3969/j.issn.1006-2513.2018.02.015
    [3]
    陈晨, 胡文忠, 姜爱丽, 等. 半胱氨酸控制鲜切苹果褐变的生理机制[J]. 食品科学,2018,39(3):282−288. [CHEN C, HU W Z, JIANG A L, et al. Physiological mechanism for browning inhibition in fresh-cut apple by cysteine[J]. Food Science,2018,39(3):282−288. doi: 10.7506/spkx1002-6630-201803042
    [4]
    CORTELLINO G, GOBBI S, BIANCHI G, RIZZOLO A. Modified atmosphere packaging for shelf life extension of fresh-cut apples[J]. Trends in Food Science and Technology,2015,46(2):320−330. doi: 10.1016/j.jpgs.2015.06.002
    [5]
    管磬馨, 胡文忠, 李婉莹, 等. 毛茶茶多酚提取工艺优化及其对鲜切苹果品质的影响[J]. 食品工业科技,2019,40(23):124−129. [GUAN Q X, HU W Z, LI W Y, et al. Optimization of extraction process of tea polyphenols from Maocha tea and its effect on quality of fresh-cut apples[J]. Science and Technology of Food Industry,2019,40(23):124−129.
    [6]
    王宝刚. 鲜切水果加工技术与质量评价[M]. 北京: 中国轻工业出版社, 2021

    WANG B G. Fresh-cut fruit processing technology and quality evaluation[M]. Beijing: China Light Industry Press, 2021.
    [7]
    韦婷, 何靖柳, 冯林, 等. 苹果皮渣的利用现状及展望[J]. 广东蚕业,2020,54(6):28−29. [WEI T. Utilization status and prospect of apple peel[J]. Guangdong Sericulture,2020,54(6):28−29. doi: 10.3969/j.issn.2095-1205.2020.06.11
    [8]
    冯涛, 杨容, 李越敏, 等. 苹果多酚提取物抗氧化活性研究[J]. 食品研究与开发,2008,29(12):189−192. [FENG T, YANG R, LI Y M, et al. Study on antioxidant activity of apple polyphenol extracts[J]. Food Research and Development,2008,29(12):189−192. doi: 10.3969/j.issn.1005-6521.2008.12.055
    [9]
    麻剑南, 何倩倩, 王雅丽, 等. 苹果皮有效成分及药理作用研究进展[J]. 食品与药品,2013,15(3):219−223. [MA J N, HE Q Q, WANG Y L, et al. Research progress on chemical constituents and pharmacological effects of apple peels[J]. Food and Drug,2013,15(3):219−223. doi: 10.3969/j.issn.1672-979X.2013.03.026
    [10]
    LIN T E, LESCH A, LI C L, GIRAULT H H. Mapping the antioxidant activity of apple peels with soft probe scanning electrochemical microscopy[J]. Journal of Electroanalytical Chemistry,2017,786:120−128. doi: 10.1016/j.jelechem.2017.01.015
    [11]
    王玉, 刘琦, 耿杰. 沙棘黄酮的分离纯化及其抗运动性疲劳作用[J]. 食品工业科技,2020,41(23):169−174. [WANG Y, LIU Q, GENG J. Purification and resisting movement fatigue activity of flavonoids from Hippophae rhamnoides L[J]. Science and Technology of Food Industry,2020,41(23):169−174. doi: 10.13386/j.issn1002-0306.2020020153
    [12]
    HUANG H Z, SUN Y J, LOU S T, et al. In vitro digestion combined with cellular assay to determine the antioxidant activity in Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruits: A comparison with traditional methods[J]. Food Chemistry,2014,146:363−370. doi: 10.1016/j.foodchem.2013.09.071
    [13]
    GUMIENNA M, LASIK M, CZARNECKI Z. Bioconversion of grape and chokeberry wine polyphenols during simulated gastrointestinal in vitro digestion[J]. International Journal of Food Science and Nutrition,2011,62(3):226−233. doi: 10.3109/09637486.2010.532115
    [14]
    MR A, TMC A, HCDSH A, et al. Encapsulation of broccoli extract by electrospraying: Influence of in vitro simulated digestion on phenolic and glucosinolate contents, and on antioxidant and antihyperglycemic activities-ScienceDirect[J]. Food Chemistry,2020:339.
    [15]
    IORE R, BARILLARI J, ROLLIN P. Comment on in vitro gastrointestinal digestion study of broccoli inflorescence phenolic compounds, glucosinolates, and vitamin C[J]. Journal of Agricultural & Food Chemistry,2004,52(24):7432−7433.
    [16]
    GULLON B, PINTADO M E, FERNÁNDEZ-LÓPEZ J, et al. In vitro gastrointestinal digestion of pomegranate peel (Punica granatum) flour obtained from co-products: Changes in the antioxidant potential and bioactive compounds stability[J]. Journal of Functional Foods,2015,19:617−628. doi: 10.1016/j.jff.2015.09.056
    [17]
    曹卓阳, 林晓娟, 张宏婧, 等. 超高静压和体外消化对芝麻酚类物质、抗氧化活性及结构的影响[J]. 食品工业科技,2022,43(3):33−39. [CAO Zhuoyang, LIN Xiaojuan, ZHANG Hongjing, et al. Effects of ultra-high static pressure and in vitro digestion on phenolics, antioxidant activity and structure from sesame[J]. Science and Technology of Food Industry,2022,43(3):33−39. doi: 10.13386/j.issn1002-0306.2021040138
    [18]
    TAGLIAZUCCHI D, VERZELLONI E, BERTOLINI D, et al. In vitro bioaccessibility and antioxidant activity of grape polyphenols[J]. Food Chemistry,2010,120(2):599−606. doi: 10.1016/j.foodchem.2009.10.030
    [19]
    TARKO T, DUDA-CHODAK A, ZAJAC N. Digestion and absorption of phenolic compounds assessed by in vitro simulation methods. A review[J]. Roczniki Państwowego Zakadu Higieny,2013,64(2):79−84.
    [20]
    CHEN Y, LIN H, LIN M, et al. Effect of roasting and in vitro digestion on phenolic profiles and antioxidant activity of water-soluble extracts from sesame[J]. Food and Chemical Toxicology,2020:111239.
    [21]
    闵芳芳, 聂少平, 万宇俊, 等. 青钱柳多糖在体外消化模型中的消化与吸收[J]. 食品科学,2013,34(21):24−29. [MIN F F, NIE S P, WAN Y J, et al. In vitro digestion and absorption of polysaccharide from Cyclocarya paliurus leaves[J]. Food Science,2013,34(21):24−29.
    [22]
    BLANQUET S, EVELIJIN Z, BEYSSAC E, et al. A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions[J]. Pharmaceutical Research,2004,21(4):585−591. doi: 10.1023/B:PHAM.0000022404.70478.4b
    [23]
    周笑犁, 吴珊珊, 林栋, 等. 体外模拟消化对蓝莓皮渣粗提物抗氧化成分及其活性的影响[J]. 食品研究与开发,2018,39(4):26−32. [ZHOU X L, WU S S, LIN D, et al. Changes in antioxidant substances and activity in crude extract of blueberry pomace during in vitro simulated digestion[J]. Food Research and Development,2018,39(4):26−32. doi: 10.3969/j.issn.1005-6521.2018.04.005
    [24]
    LI X C, CHEN D F, MAI Y, WEN B, WANG X Z. Concordance between antioxidant activities in vitro and chemical components of Radix Astragali (Huangqi)[J]. Natural Product Research,2012,26(11):1050−1053. doi: 10.1080/14786419.2010.551771
    [25]
    齐美娜. 紫色马铃薯中花色苷的提取、产品研制及其抗氧化活性的研究[D]. 哈尔滨: 东北农业大学, 2013

    QI M N. Studies on extraction, the development of products and antioxidant activity of anthocyanins in purple potato[D]. Harbin: Northeast Agricultural University, 2013.
    [26]
    楼舒婷, 林雯雯, 孙玉敬, 等. 黑果枸杞中多酚的体外消化及其抗氧化性研究[J]. 食品工业科技,2015,36(11):66−70. [LOU S T, LIN W W, SUN Y X, et al. Research of bioavailability and antioxidant activity of polyphenol in Lycium ruthenicum Murr[J]. Science and Technology of Food Industry,2015,36(11):66−70.
    [27]
    饶雪甜, 曾新安, 林松毅, 等. 黑果腺肋花楸在体外模拟消化过程中酚类物质及抗氧化性的变化规律[J]. 现代食品科技, 2020, 36(12): 77−83

    RAO X T, ZENG X A, LIN S Y, et al. Changing trends in the phenolic substances and antioxidant activities of chokeberry (Aronia melanocarpa) subjected to in vitro simulated digestion[J]. Modern Food Science and Technology, 2020, 36(12): 77−83.
    [28]
    彭梦雪, 从彦丽, 刘冬. 模拟胃肠消化评价苹果多酚、黄酮及抗氧化活性的相关性[J]. 现代食品科技,2016,32(1):122−128. [PENG M X, CONG Y L, LIU D. Determination of antioxidant activity and the contents of polyphenols and flavonoids of apples by simulated gastrointestinal digestion[J]. Modern Food Science and Technology,2016,32(1):122−128. doi: 10.13982/j.mfst.1673-9078.2016.1.020
    [29]
    颜才植, 叶发银, 赵国华. 食品中多酚形态的研究进展[J]. 食品科学,2015,36(15):275−280. [YAN C Z, YE F Y, ZHAO G H. Review of studies on free and bound polyphenols in foods[J]. Food Science,2015,36(15):275−280.
    [30]
    OU B X, HUANG D J, HAMPSCH-WOODILL M, et al. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity(ORAC) and ferric reducing antioxidant power(FRAP) assays: A comparative study[J]. Journal of Agricultural and Food Chemistry,2002,50(11):3122−3128. doi: 10.1021/jf0116606
    [31]
    聂继云, 吕德国, 李静, 等. 苹果果实中类黄酮化合物的研究进展[J]. 园艺学报,2009,36(9):1390−1397. [NIE J Y, LU D G, LI J, et al. Advances in studies on flavonoids in apple fruit[J]. Acta Horticulturae Sinica,2009,36(9):1390−1397. doi: 10.3321/j.issn:0513-353X.2009.09.023
  • Related Articles

    [1]GUO Haodan, WU Ying, WEI Yuqiong, CAO Li, BAI Zhouya, FAN Qiuxia, PENG Nan, GU Shaobin. Preparation and Anti-fatigue Function of Weizmannia coagulans BC99 Emergency Energy Bar[J]. Science and Technology of Food Industry, 2025, 46(1): 218-230. DOI: 10.13386/j.issn1002-0306.2024010361
    [2]ZHONG Qiming, ZHANG Jiayu, GUO Cheng, YANG Guoyan, JIA Xiwu, LIU Yubiao, JIN Weiping. Correlation Analysis of 3D Printability and Rheological Properties of Sodium Alginate Hydrogels[J]. Science and Technology of Food Industry, 2023, 44(23): 21-28. DOI: 10.13386/j.issn1002-0306.2023030162
    [3]HU Hua. Purification of Flavonoids from Eupatorium fortunei Turcz. and Its Anti-oxidant and Resisting Exercise Fatigue Effects[J]. Science and Technology of Food Industry, 2022, 43(15): 220-226. DOI: 10.13386/j.issn1002-0306.2021110064
    [4]LIU Wenjing. Preparation of Amaranthus caudatus L. and Punica granatum Composite Beverage and Its Resisting Exercise Fatigue Effect[J]. Science and Technology of Food Industry, 2021, 42(12): 203-208. DOI: 10.13386/j.issn1002-2020090125
    [5]WANG Yu, LIU Qi, GENG Jie. Purification and Resisting Movement Fatigue Activity of Flavonoids from Hippophae rhamnoides L.[J]. Science and Technology of Food Industry, 2020, 41(23): 169-174. DOI: 10.13386/j.issn1002-0306.2020020153
    [6]LIU Jia-wei, ZHANG Xin-yun, LIN Hui-jiao, YUAN Li-wei, LIU Jia-le, WANG Chun-mei, SUN Jing-hui, ZHANG Cheng-yi, CHEN Jian-guang, LI He, JING Shu. Anti-fatigue Effect of Anwulignan on Aging Mice[J]. Science and Technology of Food Industry, 2020, 41(18): 319-323. DOI: 10.13386/j.issn1002-0306.2020.18.050
    [7]CHEN Rong, WU Qi-nan. Effect of Semen Euryales seed coat polyphenols on anti-fatigue and hypoxia tolerance[J]. Science and Technology of Food Industry, 2015, (24): 100-103. DOI: 10.13386/j.issn1002-0306.2015.24.012
    [8]LI Ming. Anti-hypoxia and anti-fatigue effects of water extract from pummel pericarp[J]. Science and Technology of Food Industry, 2014, (16): 342-343. DOI: 10.13386/j.issn1002-0306.2014.16.066
    [9]WANG Xin, XU Li-ping. Evaluation of the antioxidant and anti-fatigue effect of soy oligopeptide[J]. Science and Technology of Food Industry, 2013, (24): 359-362. DOI: 10.13386/j.issn1002-0306.2013.24.023
    [10]Anti-fatigue effect of functional rice wine in mice[J]. Science and Technology of Food Industry, 2012, (23): 364-366. DOI: 10.13386/j.issn1002-0306.2012.23.009
  • Cited by

    Periodical cited type(2)

    1. 穆雪萌,杜芯仪,王彦超,金云峰,张嘉. 桑椹来源的寡核苷酸显著改善小鼠骨质疏松症. 动物营养学报. 2024(01): 602-609 .
    2. 柯昌虎,严慧,赵阳,朱军,李志浩. 基于网络药理学和分子对接探讨黄精抗衰老的作用机制. 湖北农业科学. 2023(10): 100-108+131 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return