HUANG Yujuan, WANG Haoyi, HUANG Yongchun, et al. Effect of Hydraulic Cavitation Modification on the Aggregation Structure of Corn Starch[J]. Science and Technology of Food Industry, 2022, 43(8): 111−116. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080187.
Citation: HUANG Yujuan, WANG Haoyi, HUANG Yongchun, et al. Effect of Hydraulic Cavitation Modification on the Aggregation Structure of Corn Starch[J]. Science and Technology of Food Industry, 2022, 43(8): 111−116. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080187.

Effect of Hydraulic Cavitation Modification on the Aggregation Structure of Corn Starch

More Information
  • Received Date: August 18, 2021
  • Available Online: February 15, 2022
  • In order to explore the influence of hydraulic cavitation modification on the aggregate structure and physicochemical properties of corn starch, this experiment took corn starch as the research object, and treated it with hydraulic cavitation for 10, 20, 30, 40 and 50 min, respectively. After treatment, the particle size distribution, microscopic morphology structure, crystalline structure, molecular short-range order structure, the swelling power and solubility of corn starch were tested. The results showed that after hydrodynamic cavitation treatment of starch, the average particle size of corn starch granules increased, conical cracks and unevenly distributed circular pores appeared on the surface of starch granules, and the relative crystallinity increased from 22.25% to 29.23%. The degree of molecular short-range order first increased and then decreased, the swelling power increased from 9.87 to 13.10 g·g−1, and the solubility increased from 8.94% to 11.76%. The cavitation effect produced by hydraulic cavitation could change the aggregated structure of corn starch.
  • [1]
    PALANISAMY C P, CUI B, ZHANG H X, et al. A comprehensive review on corn starch-based nanomaterials: Properties, simulations, and applications[J]. Polymers,2020,12(9):E2161. doi: 10.3390/polym12092161
    [2]
    马先红, 张文露, 张铭鉴. 玉米淀粉的研究现状[J]. 粮食与油脂,2019,32(2):4−6. [MA X H, ZHANG W L, ZHANG M J. Research status of corn starch[J]. Cereals & Oils,2019,32(2):4−6.
    [3]
    张江宁, 丁卫英, 张玲, 等. 糯玉米淀粉在食品中应用的研究进展[J]. 农产品加工,2019(11):87−88. [ZHANG J N, DING W Y, ZHANG L, et al. Research progress on the application of waxy corn starch in food[J]. Farm Products Processing,2019(11):87−88.
    [4]
    宋洋. 玉米淀粉糖的潜在应用[J]. 中国化工贸易,2018,10(5):128. [SONG Y. Potential application of corn starch sugar[J]. China Chemical Trade,2018,10(5):128.
    [5]
    羊云龙, 金晓亮. 变性玉米淀粉的性质及其应用研究[J]. 种子科技,2018,36(5):83. [YANG Y L, JING X L. Study on properties and application of modified maize starch[J]. Seed Science & Technology,2018,36(5):83.
    [6]
    刘张虎. 关于变性淀粉在食品工业中的应用思考[J]. 科技展望,2015,25(22):242. [LIU Z H. Thinking about the application of modified starch in food industry[J]. Technology Outlook,2015,25(22):242.
    [7]
    曹英, 夏文, 王飞, 等. 物理改性对淀粉特性影响的研究进展[J]. 食品工业科技,2019,40(21):315−319,325. [CAO Y, XIA W, WANG F, et al. Research progress on the effect of physical modification on starch properties[J]. Science and Technology of Food Industry,2019,40(21):315−319,325.
    [8]
    DAS A N, SIT N D. Modification of taro starch and starch nanoparticles by various physical methods and their characterization[J]. Starch-Stärke,2021,73(5-6):2000227.
    [9]
    孙亚东, 陈启凤, 吕闪闪, 等. 淀粉改性的研究进展[J]. 材料导报,2016(21):68−74. [SUN Y D, CHEN Q F, LU S S, et al. Recent progress in modification of starch[J]. Materials Review,2016(21):68−74.
    [10]
    VAMADEVAN V, BERTOFT E. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules[J]. Food Hydrocolloids,2020,103:105663. doi: 10.1016/j.foodhyd.2020.105663
    [11]
    徐忠, 周美琴, 吴艳华, 等. 复合变性对淀粉性质的影响研究[J]. 食品工业科技,2008(1):282−285. [XU Z, ZHOU M Q, WU Y H, et al. Study on effect of combination modified on starch[J]. Science and Technology of Food Industry,2008(1):282−285.
    [12]
    陈海明. 超声对玉米淀粉聚集态结构的影响及其辅助化学改性研究[D]. 广州: 华南理工大学, 2012.

    CHEN H M. The influence of ultrasonic on aggregation state structure of corn starch and assist of chemical modification[D]. Guangzhou: South China University of Technology, 2012.
    [13]
    FALSAFI S R, MAGHSOUDLOU Y, ROSTAMABADI H, et al. Preparation of physically modified oat starch with different sonication treatments[J]. Food Hydrocolloids,2019,89(1):311−320.
    [14]
    MONROY Y, RIVERO S, MA G. Microstructural and techno-functional properties of cassava starch modified by ultrasound[J]. Ultrasonics Sonochemistry,2018,42(1):795−804.
    [15]
    沈壮志, 林书玉. 声场中水力空化泡的动力学特性[J]. 物理学报,2011,60(8):385−394. [SHEN Z Z, LIN S Y. Dynamical behaviors of hydrodynamic cavitation bubble under ultrasound field[J]. Acta Physica Sinica,2011,60(8):385−394.
    [16]
    沈壮志, 柳楠. 文丘里管反应器空化泡的动力学特性[J]. 陕西师范大学学报(自科版),2012,40(1):23−28. [SHEN Z Z, LIU N. Bubble dynamical behaviors in the venturicavitation reactor[J]. Journal of Shaanxi Normal University (Natural Science Edition),2012,40(1):23−28.
    [17]
    KADIVAR E, TIMOSHEVSKIY M V, NICHIK M Y, et al. Control of unsteady partial cavitation and cloud cavitation in marine engineering and hydraulic systems[J]. Physics of Fluids,2020,32(5):1−19.
    [18]
    SUSLICK K S, EDDINGSAAS N C, FLANNIGAN D J, et al. Extreme conditions during multibubble cavitation: Sonolumi-nescence as a spectroscopic probe[J]. Ultrasonics Sonochemistry,2011,18(4):842−846. doi: 10.1016/j.ultsonch.2010.12.012
    [19]
    ASAITHAMBI N, SINGHA P, DWIVEDI M, et al. Hydrodynamic cavitation and its application in food and beverage industry: A review[J]. Journal of Food Process Engineering,2019,42(5):e13144.
    [20]
    王宏伟, 丁江涛, 张艳艳, 等. 湿热处理对薏米淀粉聚集态结构及糊化特性的影响[J]. 食品科学,2020,41(17):111−117. [WANG H W, DING J T, ZHANG Y Y, et al. Impact of heat moisture treatment on the aggregation structure and pasting behavior of adlay starch[J]. Food Science,2020,41(17):111−117.
    [21]
    王宏伟, 肖乃勇, 马颖. 超声处理时间对小麦淀粉聚集态结构及理化性能的影响[J]. 轻工学报,2019,34(5):10−19. [WANG H W, XIAO N Y, MA Y. Effect of ultrasonic treatment time on aggregation structure and physicochemical properties of wheat starch[J]. Journal of Light Industry,2019,34(5):10−19.
    [22]
    WANG H W, XU K, MA Y, et al. Impact of ultrasonication on the aggregation structure and physicochemical characteristics of sweet potato starch[J]. Ultrasonics Sonochemistry,2020,63:104868. doi: 10.1016/j.ultsonch.2019.104868
    [23]
    张健东, 孙三祥, 乔慧琼. 水力空化技术的研究及其应用[J]. 环境科学与管理,2007(5):65−69. [ZHANG J D, SUN S X, QIAO H Q. The application and study of hydrodynamic cavitation[J]. Environmental Science and Management,2007(5):65−69.
    [24]
    扶雄, 黄强. 食用变性淀粉[M]. 北京: 中国轻工业出版社, 2016.

    FU X, HUANG Q. Modified starch in food[M]. Beijing: China Light Industry Press, 2016.
    [25]
    胡爱军, 李倩, 郑捷, 等. 双频超声对红薯淀粉结构和性质的影响[J]. 高校化学工程学报,2014,28(2):370−375. [HU A J, LI Q, ZHENG J, et al. Effects of dual-frequency ultrasound on structure and properties of sweet potato starch[J]. Journal of Chemical Engineering of Chinese Universities,2014,28(2):370−375.
    [26]
    陈翠兰, 张本山, 陈福泉. 淀粉结晶度计算的新方法[J]. 食品科学,2011,32(9):68−71. [CHEN C L, ZHANG B S, CHEN F Q. A novel method for calculating starch crystallinity[J]. Food Science,2011,32(9):68−71.
    [27]
    徐斌, 满建民, 韦存虚. 粉末X射线衍射图谱计算植物淀粉结晶度方法的探讨[J]. 植物学报,2012,47(3):278−285. [XU B, MAN J M, WEI C X. Methods for determining relative crystallinity of plant starch X-ray powder diffraction spectra[J]. Chinese Bulletin of Botany,2012,47(3):278−285.
    [28]
    杨景峰, 罗志刚, 罗发兴. 淀粉晶体结构研究进展[J]. 食品工业科技,2007(7):240−243. [YANG J F, LUO Z G, LUO F X. Research progress on crystal structure of starch[J]. Science and Technology of Food Industry,2007(7):240−243.
    [29]
    PAMELA C, FLORES S, CESAR A, et al. In vitro digestibility of ultrasound-treated corn starch[J]. Starch-tä rke,2017,69(9-10):1700040.
    [30]
    SEVENOU O, HILL S E, FARHAT I A, et al. Organisation of the external region of the starch granule as determined by infrared spectroscopy[J]. International Journal of Biological Macromolecules,2002,31(1-3):79−85. doi: 10.1016/S0141-8130(02)00067-3
    [31]
    DING Y B, XIAO Y W, OUYANG Q F, et al. Modulating the in vitro digestibility of chemically modified starch ingredient by a non-thermal processing technology of ultrasonic treatment[J]. Ultrasonics Sonochemistry,2021,70:105350. doi: 10.1016/j.ultsonch.2020.105350
    [32]
    贾淑玉, 张百汝, 李杰, 等. 湿热处理对山药粉理化及结构性质的影响[J]. 食品工业科技,2021,42(7):22−26. [JIA S Y, ZHANG B R, LI J, et al. Effect of heat moisture treatment on physicochemical and structural properties of yam flour[J]. Science and Technology of Food Industry,2021,42(7):22−26.
  • Cited by

    Periodical cited type(24)

    1. 张娜,刘丽,李璐,吕京京,董益阳. 青胶蒲公英根多酚超声辅助提取工艺优化及其体外抗氧化、降糖活性. 食品工业科技. 2024(17): 200-208 . 本站查看
    2. 李梅婷,赵泽帆,张晓静,陈宝怡,卢乐怡,张喆,董林欣,王静,肖国丹,张绮玥. 余甘子多酚提取工艺优化研究. 质量安全与检验检测. 2024(04): 85-91 .
    3. 郝晓华,宋雅林,刘可心. 响应面法优化酸提取荷叶中生物碱的工艺研究. 太原师范学院学报(自然科学版). 2024(03): 56-64 .
    4. 李泽洋,黄华,肖善芳,郭松. 半边风多酚提取工艺优化及其抗氧化和抗菌活性研究. 饲料研究. 2024(19): 102-107 .
    5. 李宏,唐中伟,袁建琴,刘亚令,李友莲. 正交设计与响应面法优化甘草多糖提取工艺的研究. 轻工科技. 2023(01): 4-9 .
    6. 张腊腊,胡浩斌,韩明虎,王玉峰,武芸. 响应面优化黄花菜多酚提取工艺及其抗氧化活性研究. 中国食品添加剂. 2023(02): 102-108 .
    7. 郑佳,王军茹,张根生,马书青. 花楸果多酚物质提取及抗氧化性的研究. 中国林副特产. 2023(01): 9-14 .
    8. 赵敏,战祥,徐茜,李泽璠,周立新. 响应面法优化五倍子多酚的提取工艺. 湖北大学学报(自然科学版). 2023(02): 294-300 .
    9. 陈婷,段宙位. 柠檬皮中多酚的超声辅助提取及其抗氧化性研究. 食品科技. 2023(02): 246-252 .
    10. 张园园,刘畅,邵颖,肖付刚. 信阳茶油提取工艺优化及脂肪酸组成分析. 食品研究与开发. 2023(13): 153-159 .
    11. 林志銮,张传海. 多花黄精多酚工艺条件优化及其抗氧化活性评价. 广州化工. 2023(08): 45-49+73 .
    12. 苏泾涵,王改萍,刘玉华,戚亚,彭大庆,李守科,曹福亮. 叶用文冠果总多酚提取工艺及抗氧化活性分析. 南京林业大学学报(自然科学版). 2023(05): 129-137 .
    13. 李科鹏,冯玉会,普开仙,李锐扬,戴应淑,师伟,李琛. 正红菇多酚的提取及抗氧化性能研究. 广州化工. 2023(19): 11-15 .
    14. 张立攀,王俊朋,钱佳英,赵梦瑶,李冰,王春杰,胡桂芳,王法云,王永. 超声辅助法提取牡丹花中总黄酮和总多酚的工艺优化. 食品安全质量检测学报. 2022(02): 567-575 .
    15. 王燕,刘书伟,张田田,侯亚楠,沈梦霞. 槟榔多酚提取工艺的优化. 海南热带海洋学院学报. 2022(02): 25-31 .
    16. 吴卫成,忻晓庭,张程程,刘大群,卢立志,胡宏海,章检明,张治国,郭阳. 番薯叶多酚提取工艺优化及其生物活性研究. 中国食品学报. 2022(05): 189-199 .
    17. 仵菲,买里得尔·叶拉里,白红进. 响应面法优化库尔勒香梨各部位总多酚提取工艺及抗氧化活性研究. 塔里木大学学报. 2022(02): 16-23 .
    18. 王琳,冉佩灵,熊双丽,李安林. 超高压腌制对烤制猪肉品质的影响. 食品工业科技. 2022(15): 19-26 . 本站查看
    19. 舒玉凤,卢静静,陈旭. 蒲公英多糖提取及其抗氧化活性研究. 现代农业科技. 2022(15): 186-189+193 .
    20. 马妮,刘慧燕,方海田,胡海明,辛世华,杨小萍,刘洪涛. 红枣多酚提取工艺优化、成分及抗氧化活性分析. 食品工业科技. 2022(16): 246-254 . 本站查看
    21. 舒玉凤,卢静静,陈旭. 超声辅助法提取蒲公英多糖及抗氧化活性研究. 农产品加工. 2022(13): 42-46 .
    22. 张星和,侯洪波,邹章玉,冯李院,汪玉洁. 高黎贡山紫果西番莲果皮中原花青素的提取工艺及其稳定性. 食品研究与开发. 2022(20): 147-155 .
    23. 林宝妹,邱珊莲,吴妙鸿,张帅,李海明,洪佳敏. 嘉宝果果皮多酚提取工艺优化及生物活性测定. 江苏农业科学. 2021(21): 191-196 .
    24. 宋姗姗,杨艾华,王微微,徐东林,杨倩军,陈杨,林子涵,王小敏. 火炭母提取物抗氧化性及稳定性研究. 中国食品添加剂. 2021(12): 23-30 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (211) PDF downloads (25) Cited by(30)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return