Citation: | BAI Xixi, HAN Chenggang, XU Ying, et al. Research Progress of Dietary Intervention Strategies for Irritable Bowel Syndrome[J]. Science and Technology of Food Industry, 2022, 43(16): 421−431. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080007. |
[1] |
VASANT D H, PAINE P A, BLACK C J, et al. British society of gastroenterology guidelines on the management of irritable bowel syndrome[J]. Gut,2021,70(7):1214−1240. doi: 10.1136/gutjnl-2021-324598
|
[2] |
NELSON A D, BLACK C J, HOUGHTON L A, et al. Systematic review and network meta-analysis: Efficacy of licensed drugs for abdominal bloating in irritable bowel syndrome with constipation[J]. Alimentary Pharmacology & Therapeutics,2021,54(2):98−108.
|
[3] |
SARAH P, BETHANY D, KATERINE B, et al. Review of treatment options for irritable bowel syndrome with constipation and chronic idiopathic constipation[J]. International Journal of General Medicine,2021,14:1457−1468. doi: 10.2147/IJGM.S274568
|
[4] |
FORD A C, MOAYYEDI P, CHEY W D, et al. American college of gastroenterology monograph on management of irritable bowel syndrome[J]. Am J Gastroenterol, 2018, 113(Suppl 2): 1-18.
|
[5] |
ATKINSON W, SHELDON T A, SHAATH N, et al. Food elimination based on IgG antibodies in irritable bowel syndrome: A randomised controlled trial[J]. Gut, 2004, 53(10): 1459-1464.
|
[6] |
LENHART A, DONG T S, MAHURKAR-JOSHI S, et al. Effect of exclusion diets on symptom severity and gut microbiota in patients with irritable bowel syndrome (IBS)[J]. Gastroenterology,2020,158(6):151.
|
[7] |
NYYSSÖLÄ A, ELLILÄ S, NORDLUND E, et al. Reduction of FODMAP content by bioprocessing[J]. Trends in Food Science & Technology,2020,99:257−272.
|
[8] |
CHUMPITAZI B P, LIM J, MCMEANS A R, et al. Evaluation of FODMAP carbohydrates content in selected foods in the united states[J]. J Pediatr,2018,199:252−255. doi: 10.1016/j.jpeds.2018.03.038
|
[9] |
LACY B E, MEARIN F, LIN C, et al. Bowel disorders[J]. Gastroenterology,2016,150(6):1393−1407. doi: 10.1053/j.gastro.2016.02.031
|
[10] |
BLACK C J, FORD A C. Global burden of irritable bowel syndrome: Trends, predictions and risk factors[J]. Nat Rev Gastroenterol Hepatol,2020,17(8):473−486. doi: 10.1038/s41575-020-0286-8
|
[11] |
FORD A C, SPERBER A D, CORSETTI M, et al. Irritable bowel syndrome[J]. The Lancet,2020,396(10263):1675−1688. doi: 10.1016/S0140-6736(20)31548-8
|
[12] |
VOJDANI A, GUSHGARI L R, VOJDANI E. Interaction between food antigens and the immune system: Association with autoimmune disorders[J]. Autoimmun Rev,2020,19(3):102459. doi: 10.1016/j.autrev.2020.102459
|
[13] |
URANGA J A, MARTINEZ V, ABALO R. Mast cell regulation and irritable bowel syndrome: Effects of food components with potential nutraceutical use[J]. Molecules,2020,25(18):4314. doi: 10.3390/molecules25184314
|
[14] |
JAVIER A L, FLORENS M V, VIOLA M F, et al. Local immune response to food antigens drives meal-induced abdominal pain[J]. Nature,2021,590(7844):151−156. doi: 10.1038/s41586-020-03118-2
|
[15] |
COUZIN-FRANKEL J. What causes IBS pain? Maybe immune flare-ups[J]. Science,2021,371(6527):333−334. doi: 10.1126/science.371.6527.333
|
[16] |
CHONG P P, CHIN V K, LOOI C Y, et al. The microbiome and irritable bowel syndrome-a review on the pathophysiology, current research and future therapy[J]. Front Microbiol,2019,10:1136. doi: 10.3389/fmicb.2019.01136
|
[17] |
CHENG X, ZHENG J, LIN A, et al. A review: Roles of carbohydrates in human diseases through regulation of imbalanced intestinal microbiota[J]. Journal of Functional Foods,2020,74:104197. doi: 10.1016/j.jff.2020.104197
|
[18] |
BARANDOUZI Z A, LEE J, MAAS K, et al. Altered gut microbiota in irritable bowel syndrome and its association with food components[J]. Journal of Personalized Medicine,2021,11(1):35. doi: 10.3390/jpm11010035
|
[19] |
VICH VILA A, IMHANN F, COLLIJ V, et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome[J]. Sci Transl Med, 2018, 10(472).
|
[20] |
RAJILIC-STOJANOVIC M, JONKERS D M, SALONEN A, et al. Intestinal microbiota and diet in IBS: Causes, consequences, or epiphenomena?[J]. Am J Gastroenterol,2015,110(2):278−287. doi: 10.1038/ajg.2014.427
|
[21] |
CHEY W D, KEEFER L, WHELAN K, et al. Behavioral and diet therapies in integrated care for patients with irritable bowel syndrome[J]. Gastroenterology,2021,160(1):47−62. doi: 10.1053/j.gastro.2020.06.099
|
[22] |
MOAYYEDI P, SIMREN M, BERCIK P. Evidence-based and mechanistic insights into exclusion diets for IBS[J]. Nat Rev Gastroenterol Hepatol,2020,17(7):406−413. doi: 10.1038/s41575-020-0270-3
|
[23] |
LILJEBO T, STORSRUD S, ANDREASSON A. Presence of fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) in commonly eaten foods: Extension of a database to indicate dietary FODMAP content and calculation of intake in the general population from food diary data[J]. BMC Nutr,2020,6:47. doi: 10.1186/s40795-020-00374-3
|
[24] |
VARNEY J, BARRETT J, SCARLATA K, et al. FODMAPs: Food composition, defining cutoff values and international application[J]. J Gastroenterol Hepatol, 2017, 32 Suppl 1: 53-61.
|
[25] |
HALMOS E P, CHRISTOPHERSEN C T, BIRD A R, et al. Diets that differ in their FODMAP content alter the colonic luminal microenvironment[J]. Gut,2015,64(1):93−100. doi: 10.1136/gutjnl-2014-307264
|
[26] |
TAP J, DERRIEN M, TORNBLOM H, et al. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome[J]. Gastroenterology,2017,152(1):111−123. doi: 10.1053/j.gastro.2016.09.049
|
[27] |
钟豪臣, 谢学炜, 陈真诚, 等. 离体晚期糖基化终末产物荧光定量检测系统的设计与实验[J]. 传感技术学报,2020,33(8):1223−1228. [ZHONG H C, XIE X W, CHEN Z C, et al. Design and experiment of a fluorescence quantitative detection system for advanced glycosylation end products in vitro[J]. Chinese Journal of Sensors and Actuators,2020,33(8):1223−1228. doi: 10.3969/j.issn.1004-1699.2020.08.022
ZHONG H C, XIE X W, CHEN Z C, et al. Design and experiment of a fluorescence quantitative detection system for advanced glycosylation end products in vitro[J]. Chinese Journal of Sensors and Actuators, 2020, 33(8): 1223-1228. doi: 10.3969/j.issn.1004-1699.2020.08.022
|
[28] |
KAMPHUIS J B J, GUIARD B, LEVEQUE M, et al. Lactose and fructo-oligosaccharides increase visceral sensitivity in mice via glycation processes, increasing mast cell density in colonic mucosa[J]. Gastroenterology,2020,158(3):652−663. doi: 10.1053/j.gastro.2019.10.037
|
[29] |
ALEKSANDROVA K, KOELMAN L, RODRIGUES C E. Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies[J]. Redox Biol,2021,42:101869. doi: 10.1016/j.redox.2021.101869
|
[30] |
SOLTANI S, KESHTELI A H, ESMAILLZADEH A, et al. Adherence to dietary approaches to stop hypertension eating plan and prevalence of irritable bowel syndrome in adults[J]. J Neurogastroenterol Motil,2021,27(1):78−86. doi: 10.5056/jnm20007
|
[31] |
王玥梅, 朱远冰, 吴巧凤. 蛋白翻译后修饰与肠易激综合征[J]. 天津医药,2020,48(11):1119−1124. [WANG Y M, ZHU Y B, WU Q F. Post-translational modifications of proteins and irritable bowel syndrome[J]. TianjinMed,2020,48(11):1119−1124. doi: 10.11958/20201235
WANG Y M, ZHU Y B, WU Q F. Post-translational modifications of proteins and irritable bowel syndrome[J]. TianjinMed, 2020, 48(11): 1119-1124. doi: 10.11958/20201235
|
[32] |
RODRIGUEZ-GARCIA A, GARCIA-VICENTE R, MORALES M L, et al. Protein carbonylation and lipid peroxidation in hematological malignancies[J]. Antioxidants (Basel), 2020, 9(12): 1212.
|
[33] |
SRUTHI C R, RAGHU K G. Advanced glycation end products and their adverse effects: The role of autophagy[J]. J Biochem Mol Toxicol,2021,35(4):e22710.
|
[34] |
CEPAS V, COLLINO M, MAYO J C, et al. Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases[J]. Antioxidants (Basel),2020,9(2):142. doi: 10.3390/antiox9020142
|
[35] |
ZHANG Q, WANG Y, FU L. Dietary advanced glycation end-products: Perspectives linking food processing with health implications[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(5):2559−2587. doi: 10.1111/1541-4337.12593
|
[36] |
徐正华, 梁玉燊, 朱克卫, 等. 食品中晚期糖基化中间产物及终末产物研究进展[J]. 食品安全质量检测学报,2020,11(5):1496−1501. [XU Z H, LIANG Y S, ZHU K W, et al. Research progress on advanced glycation end productes and intermediate products in foods[J]. Journal of Food Safety and Quality,2020,11(5):1496−1501.
XU Z H, LIANG Y S, ZHU K W, et al. Research progress on advanced glycation end productes and intermediate products in foods[J]. Journal of Food Safety and Quality, 2020, 11(5): 1496-1501.
|
[37] |
STAUDACHER H M, SCHOLZ M, LOMER M C, et al. Gut microbiota associations with diet in irritable bowel syndrome and the effect of low FODMAP diet and probiotics[J]. Clin Nutr,2021,40(4):1861−1870. doi: 10.1016/j.clnu.2020.10.013
|
[38] |
ZHOU C, FANG X, XU J, et al. Bifidobacterium longum alleviates irritable bowel syndrome-related visceral hypersensitivity and microbiota dysbiosis via paneth cell regulation[J]. Gut Microbes,2020,12(1):1782156. doi: 10.1080/19490976.2020.1782156
|
[39] |
NIU H L, XIAO J Y. The efficacy and safety of probiotics in patients with irritable bowel syndrome: Evidence based on 35 randomized controlled trials[J]. Int J Surg,2020,75:116−127. doi: 10.1016/j.ijsu.2020.01.142
|
[40] |
GIGANTE I, TUTINO V, RUSSO F, et al. Cannabinoid receptors overexpression in a rat model of irritable bowel syndrome (IBS) after treatment with a ketogenic diet[J]. Int J Mol Sci,2021,22(6):2880. doi: 10.3390/ijms22062880
|
[41] |
KRIEGER-GRUBEL C, HUTTER S, HIESTAND M, et al. Treatment efficacy of a low FODMAP diet compared to a low lactose diet in IBS patients: A randomized, cross-over designed study[J]. Clin Nutr ESPEN,2020,40:83−89. doi: 10.1016/j.clnesp.2020.09.020
|
[42] |
ISPIRYAN L, ZANNINI E, ARENDT E K. Characterization of the FODMAP-profile in cereal-product ingredients[J]. Journal of Cereal Science,2020,92:102916. doi: 10.1016/j.jcs.2020.102916
|
[43] |
韩春茂, 岳晓洁, STIG Bengmark. 晚期糖化终产物与食物[J]. 中华临床营养杂志,2009(2):107−110. [HAN C M, YUE X J, STIG B. Advanced glycation end products and food[J]. Chinese Journal of Clinical Nutrition,2009(2):107−110. doi: 10.3760/cma.j.issn.1674-635X.2009.02.013
HAN C M, YUE X J, STIG B. Advanced glycation end products and food[J]. Chinese Journal of Clinical Nutrition, 2009(2): 107-110. doi: 10.3760/cma.j.issn.1674-635X.2009.02.013
|
[44] |
VINOLO M A, RODRIGUES H G, NACHBAR R T, et al. Regulation of inflammation by short chain fatty acids[J]. Nutrients,2011,3:858−876. doi: 10.3390/nu3100858
|
[45] |
MARTÍNEZ V, DE-HOND A I, BORRELLI F, et al. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: Useful nutraceuticals?[J]. International Journal of Molecular Sciences,2020,21(9):3067. doi: 10.3390/ijms21093067
|
[46] |
LIU Z Q, LI X X, QIU S Q, et al. Vitamin D contributes to mast cell stabilization[J]. Allergy,2017,72:1184−1192. doi: 10.1111/all.13110
|
[47] |
ZINGG J M. Vitamin E and mast cells[J]. Vitamins & Hormones-advances in Research & Applications,2007:393−418.
|
[48] |
LECLEIRE S, HASSAN A, MARION-LETELLIER R, et al. Combined glutamine and arginine decrease proinflammatory cytokine production by biopsies from Crohn’s patients in association with changes in nuclear factor-kappa B and p38 mito-gen-activated protein kinase pathways[J]. Nutr,2008,138:2481−2486. doi: 10.3945/jn.108.099127
|
[49] |
SAKAI S, SUGAWARA T, MATSUBARA K, et al. Inhibitory effect of carotenoids on the degranulation of mast cells via suppression of antigen-induced aggregation of high affinity IgE receptors[J]. Biol Chem,2009,284:28172−28179. doi: 10.1074/jbc.M109.001099
|
[50] |
JU H R, WU H Y, NISHIZONO S, et al. Effects of dietary fats and curcumin on ige-mediated degranulation of intestinal mast cell in brown norway rats[J]. Bioscience Biotechnology and Biochemistry,1996,60(11):1856−1860. doi: 10.1271/bbb.60.1856
|
[51] |
ISPIRYAN L, KUKTAITE R, ZANNINI E, et al. Fundamental study on changes in the FODMAP profile of cereals, pseudo-cereals, and pulses during the malting process[J]. Food Chem,2021,343:128549. doi: 10.1016/j.foodchem.2020.128549
|
[52] |
FANG S, YAN B, TIAN F, et al. β-fructosidase FosE activity in Lactobacillus paracasei regulates fructan degradation during sourdough fermentation and total FODMAP levels in steamed bread[J]. Lwt,2021,145:111294. doi: 10.1016/j.lwt.2021.111294
|
[53] |
ATZLER J J, ISPIRYAN L, GALLAGER E, et al. Enzymatic degradation of FODMAPS via application of β-fructofuranosidases and α-galactosidases- a fundamental study[J]. Journal of Cereal Science,2020,95:102993. doi: 10.1016/j.jcs.2020.102993
|
[54] |
KATROLIA P, RAJASHEKHARA E, YAN Q, et al. Biotechnological potential of microbial alpha-galactosidases[J]. Crit Rev Biotechnol,2014,34(4):307−317. doi: 10.3109/07388551.2013.794124
|
[55] |
KATROLIA P, LIU X, LI J, et al. Enhanced elimination of non-digestible oligosaccharides from soy milk by immobilized alpha-galactosidase: A comparative analysis[J]. J Food Biochem,2019,43(11):e13005.
|
[56] |
韩喻, 扈莹莹, 贺菁蕾, 等. 植物提取物对晚期糖基化终产物抑制机理的研究进展[J]. 食品科学,2021,42(9):233−240. [HAN Y, HU Y Y, HE J L, et al. Research progress on the inhibitory mechanism of plant extracts on advanced glycation end products[J]. Food Science,2021,42(9):233−240. doi: 10.7506/spkx1002-6630-20200404-050
HAN Y, HU Y Y, HE J L, et al. Research progress on the inhibitory mechanism of plant extracts on advanced glycation end products[J]. Food Science, 2021, 42(9): 233-240. doi: 10.7506/spkx1002-6630-20200404-050
|
[57] |
YU P, XU X B, YU S J. Inhibitory effect of sugarcane molasses extract on the formation of N(epsilon)-(carboxymethyl)lysine and N(epsilon)-(carboxyethyl)lysine[J]. Food Chem,2017,221:1145−1150. doi: 10.1016/j.foodchem.2016.11.045
|
[58] |
ZHANG H, TROISE A D, QI Y, et al. Insoluble dietary fibre scavenges reactive carbonyl species under simulated physiological conditions: The key role of fibre-bound polyphenols[J]. Food Chem,2021,349:129018. doi: 10.1016/j.foodchem.2021.129018
|
[59] |
NIE C, LI Y, QIAN H, et al. Advanced glycation end products in food and their effects on intestinal tract[J]. Critical Reviews in Food Science and Nutrition,2020:1−13.
|
[60] |
KUTLU T. Dietary glycotoxins and infant formulas[J]. Turk Pediatri Arsivi,2016,51(4):179−185. doi: 10.5152/TurkPediatriArs.2016.2543
|
[61] |
WEI Q, LIU T, SUN D W. Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review[J]. Trends in Food Science & Technology,2018,82:32−45.
|
[62] |
陈希苗, 李美英, 许秋莉, 等. 体外模拟胃肠消化中山楂多酚及抗氧化活性的变化[J]. 食品科学,2019,40(5):31−37. [CHEN X M, LI M Y, XU Q L, et al. Changes in polyphenol contents and antioxidant activity in hawthorn (Crataegus pinnatifida bunge) during simulated gastrointestinal digestion[J]. Food Science,2019,40(5):31−37. doi: 10.7506/spkx1002-6630-20170930-447
CHEN X M, LI M Y, XU Q L, et al. Changes in polyphenol contents and antioxidant activity in hawthorn (Crataegus pinnatifida bunge) during simulated gastrointestinal digestion[J]. Food Science, 2019, 40(5): 31-37. doi: 10.7506/spkx1002-6630-20170930-447
|
[63] |
RASOULI H, YARANI R, POCIOT F, et al. Anti-diabetic potential of plant alkaloids: Revisiting current findings and future perspectives[J]. Pharmacological Research,2020,155:104723. doi: 10.1016/j.phrs.2020.104723
|
[64] |
李逍. 白牡丹茶中黄烷醇生物碱及其抑制晚期糖基化终末产物形成的研究[D]. 合肥: 安徽农业大学, 2018
LI X. Novel flavoalkaloids from Bai-Mudan tea with Inhibitory activity against formation of advanced glycation end products[D]. Heifei: Anhui Agricultural University, 2018.
|
[65] |
杨洁, 孙捷, 王晓静. 晚期糖基化终末产物抑制剂的研究进展[J]. 中国药物化学杂志,2019,29(5):398−406. [YANG J, SUN J, WANG X J. Research progress of advanced glycation end products inhibitors[J]. Chinese Journal of Medicinal Chemistry,2019,29(5):398−406.
YANG J, SUN J, WANG X J. Research progress of advanced glycation end products inhibitors[J]. Chinese Journal of Medicinal Chemistry, 2019, 29(5): 398-406.
|
[66] |
范智义, 袁晓金, 贾本盼, 等. 天然酚类化合物对晚期糖基化末端产物抑制作用研究进展[J]. 中国食品学报,2019,19(3):306−316. [FAN Z Y, YUAN X J, JIA B P, et al. Research progress of inhibitory effect of natural-derived phenolic compounds on advanced glycation end products[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(3):306−316.
FAN Z Y, YUAN X J, JIA B P, et al. Research progress of inhibitory effect of natural-derived phenolic compounds on advanced glycation end products[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(3): 306-316.
|
[67] |
BARKY A E, HUSSEIN S A, ALM-ELDEEN A E, et al. Saponins and their potential role in diabetes mellitus[J]. Diabetes Management,2017,7(1):148−158.
|
[68] |
SREY C, HULL GL, CONNOLLY L, et al. Effect of inhibitor compounds on Nε-(carboxymethyl)lysine (CML) and Nε(carboxyethyl)lysine(CEL) formation in model foods[J]. Journal of Agricultural and Food Chemistry,2010,58(22):12036−12041. doi: 10.1021/jf103353e
|
[69] |
张丽梅. 紫山药多糖抗衰老活性及其机制研究[D]. 北京: 中国农业大学, 2018
ZHANG L M. Effect of purple yam polysaccharaides (PYPs) on anti-agint activity and its mechanism[D]. Beijing: China Agricultural University, 2018.
|
[70] |
马涛. 糖基化终末产物抑制剂对糖尿病并发症的影响[J]. 医学信息,2021,34(10):4. [MA T. The effect of inhibitors of advanced glycation end products on the complications of diabetes[J]. Journal of Medical Information,2021,34(10):4.
MA T. The effect of inhibitors of advanced glycation end products on the complications of diabetes[J]. Journal of Medical Information, 2021, 34(10): 4.
|
[71] |
康世墨. 芦荟中蒽醌类化合物对食品模拟体系中糖基化终产物抑制作用的研究[D]. 沈阳: 沈阳农业大学, 2016
KANG S M. Study on inhibition on advanced glycation endproducts in model food process system by anthraquinone components derivatives from Aloe[D]. Shenyang: Shenyang Agricultural University, 2016.
|
[72] |
GRASSMANN J. Terpenoids as plant antioxidants[J]. Vitamins & Hormones,2005,72:505−535.
|
[73] |
MUIR J G, SHEPHERD S J, ROSELLA O, et al. Fructan and free fructose content of common Australian vegetables and fruit[J]. J Agric Food Chem,2007,55(16):6619−6627. doi: 10.1021/jf070623x
|
[74] |
SANZ V. Fluorometric sensors based on chemically modified enzymes glucose determination in drinks[J]. Talanta,2003,60(2-3):415−423. doi: 10.1016/S0039-9140(03)00075-4
|
[75] |
SANTONICO M, GRASSO S, PENNAZZA G, et al. A sensor system for the monitoring of production processes of low FODMAP food[J]. Proceedings, 2018, 2(13): 761.
|
[76] |
TAMBORRINO A, LEONE A, ROMANIELLO R, et al. Evaluation of a multisensorial system for a rapid preliminary screening of the olive oil chemical compounds in an industrial process[J]. Journal of Agricultural Engineering,2020,51(2):73−79. doi: 10.4081/jae.2020.1016
|
[77] |
ZHAO D, SHENG B, WU Y, et al. Comparison of free and bound advanced glycation end products in food: A review on the possible influence on human health[J]. J Agric Food Chem,2019,67(51):14007−14018. doi: 10.1021/acs.jafc.9b05891
|
[78] |
卞华伟, 李玉婷, 李冰, 等. 国内常见食品中羧甲基赖氨酸含量分析[J]. 现代食品科技,2014,30(11):223−228. [BIAN H W, LI Y T, LI B, et al. Analysis of Nε-(carboxymethyl) lysine content in oriental foods[J]. Modern Food Science and Technology,2014,30(11):223−228.
BIAN H W, LI Y T, LI B, et al. Analysis of Nε-(carboxymethyl) lysine content in oriental foods[J]. Modern Food Science and Technology, 2014, 30(11): 223-228.
|
[79] |
ZHANG H, WANG B, SEEHAFER K, et al. Sensor array based determination of edman degradated amino acids using poly(p-phenyleneethynylene)s[J]. Chemistry,2020,26(35):7779−7782. doi: 10.1002/chem.202001262
|
[80] |
MELCHIOR C, ALGERA J, COLOMIER E, et al. Food avoidance and restriction in irritable bowel syndrome: Relevance for symptoms, quality of life and nutrient intake[J]. Clin Gastroenterol Hepatol, 2021: 1290-1298.
|
[81] |
TANG Y, ZHAO Y, WANG P, et al. Simultaneous determination of multiple reactive carbonyl species in high fat diet-induced metabolic disordered mice and the inhibitory effects of rosemary on carbonyl stress[J]. J Agric Food Chem,2021,69(3):1123−1131. doi: 10.1021/acs.jafc.0c07748
|
[82] |
STANISZEWSKA M, BRONOWICKA-SZYDELKO A, GOSTOMSKA-PAMPUCH K, et al. The melibiose-derived glycation product mimics a unique epitope present in human and animal tissues[J]. Sci Rep,2021,11(1):2940. doi: 10.1038/s41598-021-82585-7
|