YUAN Dongxue, CHANG Jingyao, YIN Yongchao, et al. Recent Advances in the Application of Oleogel as Fat Replacers in Meat Products[J]. Science and Technology of Food Industry, 2022, 43(14): 467−474. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070277.
Citation: YUAN Dongxue, CHANG Jingyao, YIN Yongchao, et al. Recent Advances in the Application of Oleogel as Fat Replacers in Meat Products[J]. Science and Technology of Food Industry, 2022, 43(14): 467−474. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070277.

Recent Advances in the Application of Oleogel as Fat Replacers in Meat Products

More Information
  • Received Date: July 22, 2021
  • Available Online: May 16, 2022
  • Although animal fat plays an important role in the juiciness and flavor of meat products, excessive intake will cause potential harm to the human body because it contains a large amount of saturated fatty acids and cholesterol. However, simply reducing the fat content in meat products will have a negative impact on the quality of the products. Therefore, how to reduce the fat content in meat products and maintain product quality has become an urgent problem in the meat industry. The vegetable oil-based oleogel not only has superior fatty acid composition but also has similar properties to animal fat. Moreover, the oleogel can confer meat products the smooth and mellow taste, which can effectively reduce the content of animal fat without destroying the original quality characteristics of the products. Therefore, this article comprehensively reviews the formation mechanism and preparation methods of oleogel, as well as the application of different types of oleogel in the field of low-fat meat products. This article may provide further insights for the production of new and healthy meat products with low saturated fatty acid content and low cholesterol content.
  • [1]
    PINTADO T, MUOZ-GONZALEZ I, SALVADOR M, et al. Phenolic compounds in emulsion gel-based delivery systems applied as animal fat replacers in frankfurters: Physico-chemical, structural and microbiological approach[J]. Food Chemistry,2020,340:128095.
    [2]
    孟彬, 于福满, 王小乔, 等. 低脂肪低亚硝酸盐肉制品研究进展[J]. 肉类研究,2011,25(9):43−46. [MENG B, YU M F, WANG X Q, et al. Research progress of low-fat and low-nitrie meat products[J]. Meat Research,2011,25(9):43−46. doi: 10.3969/j.issn.1001-8123.2011.09.011

    MENG B, YU M F, WANG X Q, et al. Research progress of low-fat and low-nitrie meat products[J]. Meat Research, 2011, 25(9): 43-46. doi: 10.3969/j.issn.1001-8123.2011.09.011
    [3]
    董学文, 张苏苏, 李大宇, 等. 脂肪替代物在肉制品中应用研究进展[J]. 食品安全质量检测学报,2017,8(6):1961−1966. [DONG X W, ZHANG S S, LI D Y, et al. Research progress of the application of fat substitutes in meat products[J]. Journal of Food Safety & Quality,2017,8(6):1961−1966. doi: 10.3969/j.issn.2095-0381.2017.06.004

    DONG X W, ZHANG S S, LI D Y, et al. Research progress of the application of fat substitutes in meat products[J]. Journal of Food Safety & Quality, 2017, 8(6): 1961-1966. doi: 10.3969/j.issn.2095-0381.2017.06.004
    [4]
    HYUK C K, DONG-MIN S, JONG H Y, et al. Evaluation of gels formulated with whey proteins and sodium dodecyl sulfate as a fat replacer in low-fat sausage[J]. Food Chemistry,2020,337:127682.
    [5]
    YOUSSEF M K, BARBUT S. Effects of protein level and fat/oil on emulsion stability, texture, microstructure and color of meat batters[J]. Meat Science,2009,82(2):228−233. doi: 10.1016/j.meatsci.2009.01.015
    [6]
    冯旸旸, 徐敬欣, 于栋, 等. 乳液凝胶替代动物脂肪在肉制品中应用的研究进展[J]. 食品科学,2019,40(21):236−242. [FENG Y Y, XU J X, YU D, et al. Recent advances in the application of emulsion gels as fat replacers in meat products[J]. Food Science,2019,40(21):236−242. doi: 10.7506/spkx1002-6630-20181119-224

    FENG Y Y, XU J X, YU D, et al. Recent advances in the application of emulsion gels as fat replacers in meat products[J]. Food Science, 2019, 40(21): 236-242. doi: 10.7506/spkx1002-6630-20181119-224
    [7]
    柯翔宇, 崔梦楠, 高彦祥, 等. 简述油凝胶及其在食品中的应用[J]. 食品科技,2019,44(10):116−121. [KE X Y, CUI M N, GAO Y X, et al. A review of oleogels and application in food[J]. Food Science and technology,2019,44(10):116−121.

    KE X Y, CUI M N, GAO Y X, et al. A review of oleogels and application in food[J]. Food Science and technology, 2019, 44, 36(10): 116-121.
    [8]
    FRANCISCO J C, LORENA S S, RICARD B, et al. Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products[J]. Trends in Food Science & Technology,2015,44(2):177−188.
    [9]
    SINGH A, AUZANNEAU F I, ROGERS M A. Advances in edible oleogel technologies—A decade in review[J]. Food Research International,2017,97(7):307−317.
    [10]
    BASCUAS S, MORELL P, HERNANDO I, et al. Recent trends in oil structuring using hydrocolloids[J]. Food Hydrocolloids,2021:106612.
    [11]
    曹振宇, 刘泽龙, 张慧娟. 食用植物油脂凝胶化技术研究进展[J]. 中国油脂, 44(8): 57

    CAO Z Y, LIU Z L, ZHANG H J. Advance in technology of edible vegetable oil-gelling[J]. China Oils and Fat, 44(8): 57.
    [12]
    SCHOLTEN E. Edible oleogels: how suitable are proteins as a structurant?[J]. Current Opinion in Food Science,2019,27:36−42. doi: 10.1016/j.cofs.2019.05.001
    [13]
    MARTINS A J, VICENTE A A, PASTRANAET L M, et al. Oleogels for development of health-promoting food products[J]. Food Science and Human Wellness,2020,9(1):31−39. doi: 10.1016/j.fshw.2019.12.001
    [14]
    SULLIVAN C M, DAVIDOVICH-PINHA M, WRIGHT A, et al. Ethylcellulose oleogels for lipophilic bioactive delivery-effect of oleogelation onin vitro bioaccessibility and stability of beta-carotene[J]. Food & Function,2017,8(4):1438−1451.
    [15]
    GIACINTUCCI V, MATTIA C, SACCHETTI G, et al. Ethylcellulose oleogels with extravirgin olive oil: The role of oil minor components on microstructure and mechanical strength[J]. Food Hydrocolloids,2018,84(11):508−514.
    [16]
    LAREDO T, BARBUT S, MARANGONIA G. Molecular interactions of polymer oleogelation[J]. Soft Matter,2011,7(6):2734−2743. doi: 10.1039/c0sm00885k
    [17]
    AREZOU K A, TABIAZAR M, ROUFEGARINEJAD L, et al. Preparation and characterization of carnauba wax/adipic acid oleogel: A new reinforced oleogel for application in cake and beef burger[J]. Food Chemistry,2020,333(9):127446.
    [18]
    RODRIGO T, JONA S P, NURIA C, et al. High-oleic and conventional soybean oil oleogels structured with rice bran wax as alternatives to pork fat in mechanically separated chicken-based bologna sausage[J]. LWT-Food Science and Technology,2020,131:109659. doi: 10.1016/j.lwt.2020.109659
    [19]
    MARYAM M, SOLTANIZADEH N, GOLI S. Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger[J]. Food Research International,2018,108(6):368−377.
    [20]
    MARTINS A J, LORENZO J M, FRANCO D, et al. Omega-3 polyunsaturated fatty acids-enriched hamburgers using sterol-based oleogels[J]. European Journal of Lipid Science and Technology,2019,121(11):1900111. doi: 10.1002/ejlt.201900111
    [21]
    MOSCHAKIS T, PANAGIOTOPOLOU E, KATSANIDIS E. Sunflower oil organogels and organogel-in-water emulsions (part I): Microstructure and mechanical properties[J]. LWT-Food Science and Technology,2016,73:153−161. doi: 10.1016/j.lwt.2016.03.004
    [22]
    ANA C F, PAULA K O, ANA P B, et al. Role of the oil on glyceryl monostearate based oleogels[J]. Food Research International,2019,120:610−619. doi: 10.1016/j.foodres.2018.11.013
    [23]
    PALLA C, VICENTE J D, CARRIN M E, et al. Effects of cooling temperature profiles on the monoglycerides oleogel properties: A rheo-microscopy study[J]. Food Research International,2019,125:108613. doi: 10.1016/j.foodres.2019.108613
    [24]
    CHEN C, ZHANG C, ZHANG Q, et al. Study of monoglycerides enriched with unsaturated fatty acids at sn-2 position as oleogelators for oleogel preparation[J]. Food Chemistry,2021(5):129534.
    [25]
    GOMEZ-ESTACA J, MARIA H A, HERRANZ B, et al. Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid ptés development[J]. Food Hydrocolloids,2018,87(2):960−969.
    [26]
    DAVIDOVICH-PINHAS M, BARBUT S, MARANGONI A G. The role of surfactants on ethylcellulose oleogel structure and mechanical properties[J]. Carbohydrate Polymers,2015,127:355−362. doi: 10.1016/j.carbpol.2015.03.085
    [27]
    MANZOCCO L, BASSO F, PLAZZOTTA S, et al. Study on the possibility of developing food-grade hydrophobic bio-aerogels by using an oleogel template approach[J]. Current Research in Food Science,2021(20):115−120.
    [28]
    DAVIDOVICH-PINHAS M, GRAVELLE A J, BARBUT S, et al. Temperature effects on the gelation of ethylcellulose oleogels[J]. Food Hydrocolloids,2015,46(4):76−83.
    [29]
    LIU N, LU Y, ZHANG Y, et al. Surfactant addition to modify the structures of ethylcellulose oleogels for higher solubility and stability of curcumin[J]. International Journal of Biological Macromolecules,2020,165:2286−2294. doi: 10.1016/j.ijbiomac.2020.10.115
    [30]
    ISSARA U, PARK S, LEE S, et al. Health functionality of dietary oleogel in rats fed high-fat diet: A possibility for fat replacement in foods[J]. Journal of Functional Foods,2020,70:103979. doi: 10.1016/j.jff.2020.103979
    [31]
    PATEL A R, NICHOLSON R A, MARANGONI A G. Applications of fat mimetics for the replacement of saturated and hydrogenated fat in food products[J]. Current Opinion in Food Science,2020,33:61−68. doi: 10.1016/j.cofs.2019.12.008
    [32]
    LOPEZ-PEDROUSO M, LORENZO J M, GULLON B, et al. Novel strategy for developing healthy meat products replacing saturated fat with oleogels[J]. Current Opinion in Food Science,2020,40:40−45.
    [33]
    GOMEZ-ESTACA J, PINTADO T, JIMENEZ-COLMENERO F, et al. Assessment of a healthy oil combination structured in ethyl cellulose and beeswax oleogels as animal fat replacers in low-fat, PUFA-enriched pork burgers[J]. Food & Bioprocess Technology,2019,12(6):1068−1081.
    [34]
    PATEL A R, DEWETTINCK K. Edible oil structuring: An overview and recent updates[J]. Food & Function,2016,7(1):20−29.
    [35]
    AGREGAN R, BARBA F J, GAVAHIAN M, et al. Fucus vesiculosus extracts as natural antioxidants for improvement of physicochemical properties and shelf life of pork patties formulated with oleogels[J]. Journal of the Science of Food and Agriculture,2019,99(10):4561−4570. doi: 10.1002/jsfa.9694
    [36]
    SINTANG M, DANTHINE S, BROWN A, et al. Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides[J]. Food Research International,2017,100(1):832−840.
    [37]
    SAWALHA H, DEN A R, VENEMA P, et al. Organogel-emulsions with mixtures of β-sitosterol and γ-oryzanol: Influence of water activity and type of oil phase on gelling capability[J]. Agricultural and Food Chemistry,2012,60(13):3462−3470. doi: 10.1021/jf300313f
    [38]
    COTABARREN I M, CRUCES S, PALLA C A. Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures[J]. Food Research International,2019,126(12):108676.1−108676.11.
    [39]
    ALEJANDRE M, ASTIASARAN I, ANSORENA D, et al. Using canola oil hydrogels and organogels to reduce saturated animal fat in meat batters[J]. Food Research International,2019,122(8):129−136.
    [40]
    KOUZOUNIS D, LAZARIDOU A, KATSANIDIS E. Partial replacement of animal fat by oleogels structured with monoglycerides and phytosterols in frankfurter sausages[J]. Meat Science,2017,130(8):38−46.
    [41]
    EDA K U, EMIN Y. Preparation and characterization of glycerol monostearate and polyglycerol stearate oleogels with selected amphiphiles[J]. Food Structure,2021,28:100192. doi: 10.1016/j.foostr.2021.100192
    [42]
    FRANCESCA R L, DOMENICO G, NOEMI B, et al. Stabilization of meat suspensions by organogelation: A rheological approach[J]. European Journal of Lipid Science and Technology,2012,114(12):1381−1389. doi: 10.1002/ejlt.201200212
    [43]
    刘盼盼, 许苗苗, 祁文静, 等. 不同单硬脂酸甘油酯含量的大豆油油凝胶性能和微观结构分析[J]. 南京农业大学学报,2018,41(3):547−554. [LIU P P, XU M M, QI W J, et al. Analysis of properties and micro-structure of soybean oil oleogels containing different 1-stearoyl-rac-glycerol contents[J]. Journal of Nanjing Agricultural University,2018,41(3):547−554. doi: 10.7685/jnau.201706046

    LIU P P, XU M M, QI W J, et al. Analysis of properties and micro-structure of soybean oil oleogels containing different 1-stearoyl-rac-glycerol contents[J]. Journal of Nanjing Agricultural University, 2018, 41(3): 547-554. doi: 10.7685/jnau.201706046
    [44]
    胡起华, 马传国, 陈小威, 等. 乙基纤维素油凝胶及其在食品中应用的研究进展[J]. 中国油脂,2020,45(1):115−120. [HU Q H, MA C G, CHEN X W, et al. Advance in ethyl cellulose-based organogel and its application in foods[J]. China Oils and Fat,2020,45(1):115−120.

    HU Q H, MA C G, CHEN X W, et al. Advance in ethyl cellulose-based organogel and its application in foods[J]. China Oils and Fat, 2020, 45(01): 115-120.
    [45]
    ZETZL A K, MARANGONI A G, BARBUT S. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters[J]. Food & Function,2012,3(3):327−337.
    [46]
    BARBUT S, WOOD J, MARANGONI A. Quality effects of using organogels in breakfast sausage[J]. Meat Science,2016,122(12):84−89.
    [47]
    JOAQUIN G E, PINTADO T, JIMENEZ-COLMENERO J, et al. The effect of household storage and cooking practices on quality attributes of pork burgers formulated with PUFA- and curcumin-loaded oleogels as healthy fat substitutes[J]. LWT-Food Science and Technology,2020,119:108909. doi: 10.1016/j.lwt.2019.108909
    [48]
    BARBUT S, WOOD J, MARANGONI A. Potential use of organogels to replace animal fat in comminuted meat products[J]. Meat Science,2016,122:155−162. doi: 10.1016/j.meatsci.2016.08.003
    [49]
    汪鸿, 孙立斌, 张亮, 等. 小烛树蜡油凝胶的性质及作用机理研究[J]. 中国粮油学报,2021:232−236. [WANG H, SUN L B, ZHANG L, et al. Properties and mechanism of candelilla wax oleogel[J]. Journal of the Chinese Cereals and Oils Association,2021:232−236.

    WANG H, SUN L B, ZHANG L, et al. Properties and mechanism of candelilla wax oleogel[J]. Journal of the Chinese Cereals and Oils Association, 2021: 232-236.
    [50]
    SILVA S, AMARAL J T, RIBEIRO M, et al. Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages[J]. Meat Science,2019,149(3):141−148.
    [51]
    FRANCO D, MARTINS A J, CERQUEIRA M A, et al. Strategy towards replacing pork backfat with a linseed oleogel in frankfurter sausages and its evaluation on physicochemical, nutritional, and sensory characteristics[J]. Foods,2019,8(9):366. doi: 10.3390/foods8090366
    [52]
    MARTINS A J, LORENZO J M, FRANCO D, et al. Characterization of enriched meat-based pate manufactured with oleogels as fat substitutes[J]. Gels,2020,6(2):17. doi: 10.3390/gels6020017
    [53]
    TAYLOR L W, NURIA C A, KENNETH J P, et al. Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax[J]. Meat Science,2018,145(11):352−362.
    [54]
    FRANCO D, MARTINS A J, LOPEZ-PEDROUSO M, et al. Evaluation of linseed oil oleogels to partially replace pork backfat in fermented sausages[J]. Journal of the Science of Food and Agriculture,2020,100(1):218−224. doi: 10.1002/jsfa.10025
    [55]
    PANAGIOTOPOULOU E, MOSCHAKIS T, KATSANIDIS E. Sunflower oil organogels and organogel-in-water emulsions (part II): Implementation in frankfurter sausages[J]. LWT - Food Science and Technology,2016:351−356.
    [56]
    GOLDSTEIN A, SEETHARAMAN K. Effect of a novel monoglyceride stabilized oil in water emulsion shortening on cookie properties[J]. Food Research International,2011,44(5):1476−1481. doi: 10.1016/j.foodres.2011.03.029
    [57]
    ANA F C, PAGLARINI C, POLLONIO M, et al. Glyceryl monostearate-based oleogels as a new fat substitute in meat emulsion[J]. Meat Science,2020,174(10):108424.
  • Related Articles

    [1]CHEN Yang, WANG Peng, PAN Kaijin, WANG Zhe, XU Jian, ZHOU Junqiang, LIAO Ziwei. Optimization of the Extraction Process of Highland Barley β-glucan by Three-phase Partitioning and Its Molecular Weight Distribution[J]. Science and Technology of Food Industry, 2023, 44(14): 220-228. DOI: 10.13386/j.issn1002-0306.2022100064
    [2]ZHANG Lixia, SUN Xiaojing, WEI Songli, JIN Lu, MA Lin, SUN Qiang, LU Xin, ZHAO Mouming. Optimization of Mixed Enzyme Ratio of Taste-based Materials Prepared by Enzymatic Hydrolysis of Peanut Meal by Mixture Design[J]. Science and Technology of Food Industry, 2021, 42(23): 184-191. DOI: 10.13386/j.issn1002-0306.2021030209
    [3]WANG Sheng-guang, YU Shuai, MENG Fan-gang, LI Bing-run, SONG Xiao-guang, LIU Guo-fei, WANG Guang-lu, DAI Long, GAO Peng. Study on relative molecular weight distribution and depressor effect of soybean peptide prepared by enzymatic method[J]. Science and Technology of Food Industry, 2018, 39(1): 46-51. DOI: 10.13386/j.issn1002-0306.2018.01.009
    [4]PENG Zhen-fen, WANG Wei, XIE Qian, YE Qing-hua, CHEN Qing-xi, XU Chang-tong. Optimization of testing method for free amino acid of Chinese olive[J]. Science and Technology of Food Industry, 2017, (22): 263-267. DOI: 10.13386/j.issn1002-0306.2017.22.051
    [5]ZHOU Feng-fang, CAI Bin-xin, WU Xin-rui, LUO Fen. Study on hydrolysis condition and molecular weight distribution of ACE inhibitory peptide derived from sea cucumber protein[J]. Science and Technology of Food Industry, 2017, (17): 163-167. DOI: 10.13386/j.issn1002-0306.2017.17.031
    [6]ZHANG Jie, DING Lin, BAI Ge, ZHENG De-juan, CAO Yan-ping. Effect of ultrasonic on molecular weight distribution of papain hydrolyzate[J]. Science and Technology of Food Industry, 2017, (14): 116-120. DOI: 10.13386/j.issn1002-0306.2017.14.023
    [7]YANG Qin, GUO Li-chang, CHEN Hai-qin, ZHANG Hao, CHEN Wei, CHEN Yong- quan. Analysis and characterization of the fatty acids and free amino acids from silkworm and tussah pupa[J]. Science and Technology of Food Industry, 2016, (23): 351-356. DOI: 10.13386/j.issn1002-0306.2016.23.058
    [8]TANG Xiao-yan, ZHENG Hui-na, ZHANG Chao-hua, HAO Ji-ming, ZHANG Jing. Protein composition analysis and molecular weight distribution of Meretrix lusoria[J]. Science and Technology of Food Industry, 2015, (22): 362-366. DOI: 10.13386/j.issn1002-0306.2015.22.066
    [9]LAI Ji- xiang, HE Cong-fen, FANG Yun, ZHAO Ya, WEI Shao-min. Study on molecular weight distribution and antioxidant activity of protein components in germinal black soybean[J]. Science and Technology of Food Industry, 2015, (01): 49-53. DOI: 10.13386/j.issn1002-0306.2015.01.001
    [10]CHANG Ya-nan, ZHAO Gai-ming, LIU Yan-xia, LI Miao-yun, HUANG Xian-qing, SUN Ling-xia. Changes of free amino acids in chicken and its broth during cooking[J]. Science and Technology of Food Industry, 2014, (09): 333-337. DOI: 10.13386/j.issn1002-0306.2014.09.064
  • Cited by

    Periodical cited type(10)

    1. 郁冯艳,付佳伟,从光雷,刘春雪,夏双双,杜莉,李俊波. 发酵饲料在动物生产中应用的研究进展. 饲料研究. 2024(04): 154-157 .
    2. 付洋洋,刘禹熙,敖翔,古燕,周建川. 液体发酵饲料的品质管理及其在养猪生产中的应用. 中国畜牧杂志. 2024(08): 55-61 .
    3. 蔡英,文洋,张官巨,邵晨阳,桂义国,蓝洪,胡延春. 小分子胶束中药对青峪黑猪肉质的影响研究. 四川畜牧兽医. 2024(10): 28-32 .
    4. 申远航,李登云,陈华,姚学丹. 发酵饲料对猪肉品质影响的Meta分析. 动物营养学报. 2023(08): 5374-5383 .
    5. 李思懿,粘颖群,谭建庄,卞宝国,杜宏,任向蕾,李春保. 基于电子鼻快速检测生鲜猪肉的异味. 食品工业科技. 2023(20): 338-348 . 本站查看
    6. 王娜. 1株益生乳酸菌的分离及其制备的发酵饲料对仔猪生长性能、血清抗氧化与免疫相关指标的影响. 黑龙江畜牧兽医. 2023(19): 93-99 .
    7. 牟超. 饲粮中添加白藜芦醇对生长育肥期猪肉品质的影响研究. 畜牧业环境. 2023(06): 5-8 .
    8. 李鹏,苏为为,王利平,肖研博,吕珂,王绍怡,岳锋,郭东光,刘兴友. 发酵饲料及其在生猪生产中的应用研究进展. 中国饲料. 2022(16): 119-122 .
    9. 宋雪莹. 发酵饲料及其在畜禽生产中应用的研究. 湖南饲料. 2022(06): 47-48 .
    10. 王成,靳明亮,单体中,汪以真. 发酵饲料对猪肉品质的影响及机制研究进展. 动物营养学报. 2022(10): 6185-6192 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return