FEI Zhongnan, WAN Minxi, FAN Fei, et al. Establishment and Scale-up of Spray Drying Technology for Haematococcus pluvialis[J]. Science and Technology of Food Industry, 2022, 43(5): 209−216. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060274.
Citation: FEI Zhongnan, WAN Minxi, FAN Fei, et al. Establishment and Scale-up of Spray Drying Technology for Haematococcus pluvialis[J]. Science and Technology of Food Industry, 2022, 43(5): 209−216. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060274.

Establishment and Scale-up of Spray Drying Technology for Haematococcus pluvialis

More Information
  • Received Date: July 01, 2021
  • Available Online: December 27, 2021
  • In order to establish a drying method for Haematococcus pluvialis with great application value, the spray drying conditions for harvested H. pluvialis in the pilot-scale (evaporation capacity of 25 kg·h−1) and production scale (evaporation capacity of 250 kg·h−1) were optimized and amplified. The results showed that inlet temperatures ranging from 130 to 180 ℃ had no significant effect on the physicochemical indexes in the pilot-scale. When the outlet air temperature in the pilot scale increased from 50 to 75 ℃, the moisture content increased, but no obvious variations in astaxanthin content and protein content were found. The total solid mass fraction could significantly affect the energy consumption, production efficiency and yield of spray drying, and the optimal total solid mass fraction for spray drying was 14.60%. The key factors affecting the quality of algae powder were the drying time for droplets and the peclet number for heat, both of which could be adjusted by the outlet temperature. The scale-up of the spray drying process of H. pluvialis powder was finally achieved by optimizing the outlet air temperature, with the production efficiency of 37.04 kg·h−1 and the yield of 98.57%. The process had commercial application value, and realized the scale production of H. pluvialis powder.
  • [1]
    RAZA S H A, NAQVI S R Z, ABDELNOUR S A, et al. Beneficial effects and health benefits of astaxanthin molecules on animal production: A review[J]. Research in Veterinary Science,2021,138:69−78. doi: 10.1016/j.rvsc.2021.05.023
    [2]
    GOFF M L, FERREC E L, MAYER C, et al. Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention[J]. Biochimie,2019,167:106−118. doi: 10.1016/j.biochi.2019.09.012
    [3]
    FARAONE I, SINISGALLI C, OSTUNI A, et al. Astaxanthin anticancer effects are mediated through multiple molecular mechanisms: A systematic review[J]. Pharmacological Research,2020,155:104689. doi: 10.1016/j.phrs.2020.104689
    [4]
    RAMMUNI M N, ARIYADASA T U, NIMARSHANA P H V, et al. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina[J]. Food Chemistry,2019,277:128−134. doi: 10.1016/j.foodchem.2018.10.066
    [5]
    KHOO K S, LEE S Y, OOI C W, et al. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis[J]. Bioresource Technology,2019,288:121606. doi: 10.1016/j.biortech.2019.121606
    [6]
    LI X, WANG X, DUAN C, et al. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis[J]. Biotechnology Advances,2020,43:107602. doi: 10.1016/j.biotechadv.2020.107602
    [7]
    BELLINGHAUSEN R. Spray drying from yesterday to tomorrow: An industrial perspective[J]. Drying Technology,2019,37(5):612−622. doi: 10.1080/07373937.2018.1517778
    [8]
    MAROOF K, LEE R, SIOW L F, et al. Microencapsulation of propolis by spray drying: A review[J]. Drying Technology,2020:1−20.
    [9]
    FURUTA T, NEOH T L. Microencapsulation of food bioactive components by spray drying: A review[J]. Drying Technology,2021:1−32.
    [10]
    O'SULLIVAN J J, NORWOOD E A, O'MAHONY J A, et al. Atomisation technologies used in spray drying in the dairy industry: A review[J]. Journal of Food Engineering,2019,243:57−69. doi: 10.1016/j.jfoodeng.2018.08.027
    [11]
    DANTAS D, PASQUALI M A, CAVALCANTI-MATA M, et al. Influence of spray drying conditions on the properties of avocado powder drink[J]. Food Chemistry,2018,266(15):284−291.
    [12]
    SILVA J, FREIXO R, GIBBS P, et al. Spray-drying for the production of dried cultures[J]. International Journal of Dairy Technology,2011,64(3):321−335. doi: 10.1111/j.1471-0307.2011.00677.x
    [13]
    RAJKUMAR G, RAJAN M, ARAUJO H C, et al. Comparative evaluation of volatile profile of tomato subjected to hot air, freeze, and spray drying[J]. Drying Technology,2021,39(3):383−391. doi: 10.1080/07373937.2020.1842441
    [14]
    BENNAMOUN L, AFZAL M T, LÉONARD A. Drying of alga as a source of bioenergy feedstock and food supplement–A review[J]. Renewable and Sustainable Energy Reviews,2015,50:1203−1212. doi: 10.1016/j.rser.2015.04.196
    [15]
    BARBOSA J, BORGES S, AMORIM M, et al. Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder[J]. Journal of Functional Foods,2015,17:340−351. doi: 10.1016/j.jff.2015.06.001
    [16]
    AHMED F, LI Y, FANNING K, et al. Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis[J]. Food Research International,2015,74:231−236. doi: 10.1016/j.foodres.2015.05.021
    [17]
    MURALI S, KAR A, MOHAPATRA D, et al. Encapsulation of black carrot juice using spray and freeze drying[J]. Food Science and Technology International,2015,21(8):604−612. doi: 10.1177/1082013214557843
    [18]
    KHA T C, NGUYEN M H, ROACH P D. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder[J]. Journal of Food Engineering,2010,98(3):385−392. doi: 10.1016/j.jfoodeng.2010.01.016
    [19]
    袁超, 金征宇. 虾青素的热稳定性及分解动力学[J]. 天然产物研究与开发,2010(6):1085−1087. [YUAN Cao, JIN Zhengyu. Thermal stability and decomposition kinetics of astaxanthin[J]. Natural Product Research and Development,2010(6):1085−1087. doi: 10.3969/j.issn.1001-6880.2010.06.042
    [20]
    RAPOSO M F J, MORAIS A M M B, MORAIS R M S C. Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass[J]. World Journal of Microbiology & Biotechnology,2012,28(3):1253−1257.
    [21]
    GIL M, VICENTE J, GASPAR F. Scale-up methodology for pharmaceutical spray drying[J]. Chimica Oggi,2010,28(4):18−22.
    [22]
    POOZESH S, BILGILI E. Scale-up of pharmaceutical spray drying using scale-up rules: A review[J]. International Journal of Pharmaceutics,2019,562:271−292. doi: 10.1016/j.ijpharm.2019.03.047
    [23]
    ZBICINSKI I. Modeling and scaling up of industrial spray dryers: A review[J]. Journal of Chemical Engineering of Japan,2017,50(10):757−767. doi: 10.1252/jcej.16we350
    [24]
    BOUSSIBA S, VONSHAK A. Astaxanthin accumulation in the green alga Haematococcus pluvialis[J]. Plant and Cell Physiology,1991,32(7):1077−1082. doi: 10.1093/oxfordjournals.pcp.a078171
    [25]
    ZHANG Z, WANG B, HU Q, et al. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis[J]. Biotechnology and Bioengineering,2016,113(10):2088−2099. doi: 10.1002/bit.25976
    [26]
    LIU Y, CHEN F, GUO H. Optimization of bayberry juice spray drying process using response surface methodology[J]. Food Science and Biotechnology,2017,26(5):1235−1244. doi: 10.1007/s10068-017-0169-0
    [27]
    阎红, 王维, 王喜忠. 喷雾干燥用雾化器尺寸的估算[J]. 化工设备与防腐蚀,2001(2):14−20. [YAN Hong, WANG Wei, WANG Xizhong. Estimation of atomizer size for spray drying[J]. Chemical Equipment & Anticorrosion,2001(2):14−20.
    [28]
    VICENTE J, PINTO J, MENEZES J, et al. Fundamental analysis of particle formation in spray drying[J]. Powder Technology,2013,247:1−7. doi: 10.1016/j.powtec.2013.06.038
    [29]
    LISBOA H M, DUARTE M E, CAVALCANTI-MATA M E. Modeling of food drying processes in industrial spray dryers[J]. Food and Bioproducts Processing,2018,107:49−60. doi: 10.1016/j.fbp.2017.09.006
    [30]
    TSAPIS N, BENNETT D, JACKSON B, et al. Trojan particles: Large porous carriers of nanoparticles for drug delivery[J]. Proceedings of the National Academy of Sciences,2002,99(19):12001−12005. doi: 10.1073/pnas.182233999
    [31]
    TONON R V, BRABET C, HUBINGER M D. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying[J]. Journal of Food Engineering,2008,88(3):411−418. doi: 10.1016/j.jfoodeng.2008.02.029
    [32]
    MAURY M, MURPHY K, KUMAR S, et al. Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer[J]. European Journal of Pharmaceutics and Biopharmaceutics,2005,59(3):565−573. doi: 10.1016/j.ejpb.2004.10.002
    [33]
    DE OLIVEIRA A H, MATA M E R M C, FORTES M, et al. Influence of spray drying conditions on the properties of whole goat milk[J]. Drying Technology,2021,39(6):726−737. doi: 10.1080/07373937.2020.1714647
    [34]
    谢明, 王伟良, 黄建科, 等. 基于响应面分析法的小球藻藻粉喷雾干燥工艺优化[J]. 食品工业科技,2012(6):263−266. [XIE Ming, WANG Weiliang, HUANG Jianke, et al. Optimization of spray drying process of Chlorella powder with response surface method[J]. Science and Technology of Food Industry,2012(6):263−266.
  • Cited by

    Periodical cited type(2)

    1. 周秀珍,刘滔,张毅,王扬,赵敏洁,王旭堂,黄菊,冯凤琴. 混合益生菌对大口黑鲈生长性能、肉品质及肠道健康的影响. 动物营养学报. 2024(07): 4588-4609 .
    2. 陈斯艺,陈恢祥,汤曜名,郭衍彪. 植物乳杆菌MH079448对日本鳗鲡肌肉品质的影响. 饲料研究. 2023(02): 75-78 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (255) PDF downloads (57) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return