Citation: | FENG Yue, ZHANG Meihong, LI Xiaoying, et al. Cloning and Expression Analysis of PacC from Penicillium italicum of Citrus Fruits Postharvest Pathogen[J]. Science and Technology of Food Industry, 2022, 43(4): 145−152. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060169. |
[1] |
ZHANG Z F, ZHU Z R, MA Z H, et al. A molecular mechanism of azoxystrobin resistance in Penicillium digitatum UV mutants and a PCR-based assay for detection of azoxystrobin-resistant strains in packing or store-house isolates[J]. International Journal of Food Microbiology,2009,131(23):157−161.
|
[2] |
ERASMUS A, LENNOX C L, KORSTEN L, et al. Imazalil resistance in Penicillium digitatum and P. italicum causing citrus postharvest green and blue mold: Impact and options[J]. Postharvest Biology and Technology,2015,107:66−76. doi: 10.1016/j.postharvbio.2015.05.008
|
[3] |
CHEN C Y, QI W W, PENG X, et al. Inhibitory effect of 7-demethoxytylophorine on Penicillium italicum and its possible mechanism[J]. Microorganisms,2019,7(2):36. doi: 10.3390/microorganisms7020036
|
[4] |
TANNOUS J, BARDA O, LUCIANO R D, et al. New insight into pathogenicity and secondary metabolism of the plant pathogen Penicillium expansum through deletion of the epigenetic reader SntB[J]. Frontiers in Microbiology,2020,11:610. doi: 10.3389/fmicb.2020.00610
|
[5] |
WANG M S, RUAN R X, LI H Y. The completed genome sequence of the pathogenic ascomycete fungus Penicillium digitatum[J]. Genomics,2021,113(2):439−446. doi: 10.1016/j.ygeno.2021.01.001
|
[6] |
FERNANDES T R, SEGORBE D, PRUSKY D, et al. How alkalinization drives fungal pathogenicity[J]. Plos Pathogens,2017,13(11):e1006621. doi: 10.1371/journal.ppat.1006621
|
[7] |
VYLKOVA S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host[J]. Plos Pathogens,2017,13(2):e1006149. doi: 10.1371/journal.ppat.1006149
|
[8] |
王萌, 杨书珍, 刘寒寒, 等. 柑橘采后病原菌意大利青霉creA基因的克隆及表达分析[J]. 华中农业大学学报,2019(4):45−54. [WANG M, YANG S Z, LIU H H, et al. Cloning and expression analysis of creA from Penicillium italicum, a postharvest pathogen of citrus fruits[J]. Journal of Huazhong Agricultural University,2019(4):45−54.
|
[9] |
WANG Y, LIU F, WANG L Q, et al. pH-signaling transcription factor AopacC regulates ochratoxin A biosynthesis in Aspergillus ochraceus[J]. Journal of Agricultural and Food Chemistry,2018,66(17):4394−4401. doi: 10.1021/acs.jafc.8b00790
|
[10] |
VIRGILIO S, BERTOLUNI M C. Functional diversity in the pH signaling pathway: An overview of the pathway regulation in Neurospora crassa[J]. Current Genetics,2018,64(3):529−534. doi: 10.1007/s00294-017-0772-x
|
[11] |
CERVANTES J A, SILVA G A, PLIEGO A R, et al. The UMAG_00031 gene from Ustilago maydis encodes a putative membrane protein involved in pH control and morphogenesis[J]. Archives of Microbiology,2020,202(4):2221−2232.
|
[12] |
LAMB T M, MITCHELL A P. The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae[J]. Molecular and Cellular Biology,2003,23(2):677−686. doi: 10.1128/MCB.23.2.677-686.2003
|
[13] |
CERVANTES J A, RUIZ H J. Identification of a novel member of the pH responsive pathway Pal/Rim in Ustilago maydis[J]. Journal of Basic Microbiology,2019,59(1):14−23. doi: 10.1002/jobm.201800180
|
[14] |
da-SILVA L G, MARTINS M P, SANCHES P R, et al. Saline stress affects the pH-dependent regulation of the transcription factor PacC in the dermatophyte Trichophyton interdigitale[J]. Brazilian Journal of Microbiology,2020,51(4):1585−1591. doi: 10.1007/s42770-020-00313-1
|
[15] |
CHEN Y, LI B Q, XU X D, et al. The pH-responsive PacC transcription factor plays pivotal roles in virulence and patulin biosynthesis in Penicillium expansum[J]. Environmental Microbiology,2018,20(11):4063−4078. doi: 10.1111/1462-2920.14453
|
[16] |
CARACUEL Z, CASANOVA C, RONCERO M, et al. pH response transcription factor PacC controls salt stress tolerance and expression of the P-Type Na+-ATPase Ena1 in Fusarium oxysporum[J]. Eukaryotic Cell,2003,2(6):1246−1252. doi: 10.1128/EC.2.6.1246-1252.2003
|
[17] |
MERHEJ J, RICHARD F, BARREAU C. The pH regulatory factor Pad1 regulates Tri gene expression and trichothecene production in Fusarium graminearum[J]. Fungal Genetics and Biology,2011,48(3):275−284. doi: 10.1016/j.fgb.2010.11.008
|
[18] |
范明, 彭丽桃, 闫等, 等. VmaH和PMA在指状青霉中的表达及其作为潜在杀菌作用靶点的可能性[J]. 食品科学,2021,42(6):126−133. [FAN M, PENG L T, YAN D, et al. Expression of VmaH and PMA in Penicillium digitatum and their potentials as antimicrobial targets[J]. Food Science,2021,42(6):126−133. doi: 10.7506/spkx1002-6630-20191230-348
|
[19] |
YANG S Z, LIU L M, LI D M, et al. Use of active extracts of poplar buds against Penicillium italicum and possible modes of action[J]. Food Chemistry,2016,196:610−618. doi: 10.1016/j.foodchem.2015.09.101
|
[20] |
LOUW J P, KORSTEN L. Impact of ripeness on the infection and colonization of Penicillium digitatum and P. expansum on plum[J]. Postharvest Biology and Technology,2019,149:148−158. doi: 10.1016/j.postharvbio.2018.11.024
|
[21] |
PENALVA M A, TILBURN J, BIGNELL E, et al. Ambient pH gene regulation in fungi: Making connections[J]. Trends in Microbiology,2008,16(6):291−300. doi: 10.1016/j.tim.2008.03.006
|
[22] |
FADDA A, SARAIS G, LAI C, et al. Control of postharvest diseases caused by Penicillium spp. with myrtle leaf phenolic extracts: In vitro and in vivo study on mandarin fruit during storage[J]. Journal of the Science of Food and Agriculture,2021,101(10):4229−4240. doi: 10.1002/jsfa.11062
|
[23] |
YAN H B, FANG T S, XU H H, et al. The pH-sensing Rim101 pathway positively regulates the transcriptional expression of the calcium pump gene PMR1 to affect calcium sensitivity in budding yeast[J]. Biochemical and Biophysical Research Communications,2020,532(3):453−458. doi: 10.1016/j.bbrc.2020.08.083
|
[24] |
RASCLE C, DIERYCKX C, DUPUY J W. The pH regulator PacC: A host-dependent virulence factor in Botrytis cinerea[J]. Environmental Microbiology Reports,2018,10(5):555−568. doi: 10.1111/1758-2229.12663
|
[25] |
MARTINS M P, MARTINEZ N M, SANCHES P R, et al. The pH signaling transcription factor PAC-3 regulates metabolic and developmental processes in pathogenic fungi[J]. Frontiers in Microbiology,2019,10(10):2076.
|
[26] |
WU F L, ZHANG G, REN A, et al. The pH-responsive transcription factor PacC regulates mycelial growth, fruiting body development, and ganoderic acid biosynthesis in Ganoderma lucidum[J]. Mycologia,2016,108(6):1104−1113.
|
[27] |
VIRGILIO S, CUPERTINO F B, BERNARDES N E, et al. Molecular components of the Neurospora crassa pH signaling pathway and their regulation by pH and the PAC-3 transcription factor[J]. Plos One,2016,11(8):e0161659. doi: 10.1371/journal.pone.0161659
|
[28] |
LUO Z B, REN H. The PacC transcription factor regulates secondary metabolite production and stress response, but has only minor effects on virulence in the insect pathogenic fungus Beauveria bassiana[J]. Environmental Microbiology,2017,19(2):788−802. doi: 10.1111/1462-2920.13648
|
[29] |
BI F C, BARAD S, MENT D, et al. Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi[J]. Molecular Plant Pathology,2016,17(8):1178−1195. doi: 10.1111/mpp.12355
|
[30] |
汪汉成, 郭华, 蔡琳, 等. 不同渗透压及pH环境对烟草青枯病菌致病力的影响[J]. 植物保护学报,2019,46(4):754−761. [WANG H C, GUO H, CAI L, et al. Effects of different osmolality and pH conditions on the pathogenicity of Ralstonia solanacearum in tobacco leaves[J]. Journal of Plant Protection,2019,46(4):754−761.
|