YU Yaowen, DAI Guoqing , HUA Haoli, et al. Ethanol-ammonium Sulfate Aqueous Two-phase Extraction of Total Flavonoids from Peach Blossom and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(4): 187−195. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060110.
Citation: YU Yaowen, DAI Guoqing , HUA Haoli, et al. Ethanol-ammonium Sulfate Aqueous Two-phase Extraction of Total Flavonoids from Peach Blossom and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(4): 187−195. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060110.

Ethanol-ammonium Sulfate Aqueous Two-phase Extraction of Total Flavonoids from Peach Blossom and Its Antioxidant Activity

More Information
  • Received Date: June 14, 2021
  • Available Online: December 16, 2021
  • The extraction technology of total flavonoids from peach blossom was studied by theaqueous two-phase system of ethanol and ammonium sulfate. On the basis of single factor experiments, response surface methodology was used to optimize the extraction process of flavonoids with the mass fraction of ammonium sulfate, liquid-solid ratio, extraction temperature and extraction time as independent variables and the yield of flavonoids as index. DPPH·, OH· and O2· free radical scavenging rates were used to evaluate the antioxidant capacity of total flavonoids from peach blossom. The results showed that the optimum extraction conditions were as follows: Mass fraction of ammonium sulfate 15.2%, extraction time 26 min, liquid-solid ratio 27.8:1(mL/g), extraction temperature 51 ℃. Under these conditions, the theoretical value and the verification value of flavonoids yield could reach 45.64% and 45.65%, respectively, which were very close to each other. The results of antioxidant experiments showed that the total flavonoids from peach blossom exhibited strong free radical scavenging ability. The DPPH· scavenging rate was 94.21% when the concentration of flavonoids was 0.56 mg/mL, and those of OH· and O2· were 91.23% and 80.65%, respectively, when the concentration of flavonoids was 0.672 mg/mL. The aqueous two-phase extraction process of total flavonoids from peach blossom optimized by response surface methodology was reasonable and applicable, the model could well predict the yield of flavonoids, and the flavonoids obtained with good antioxidant properties would be further developed and utilized.
  • [1]
    POONAM V, RAUNAK-KUMAR G, REDDY L C S, et al. Chemical constituents of the genus Prunus and their medicinal properties[J]. Current Medicinal Chemistry,2011,18:3758−3824. doi: 10.2174/092986711803414386
    [2]
    TAKAGI S, YAMAKI M, MASUDA K, et al. Studies on the purgative drugs. III. On the constituents of the flowers of Prunus persica Batsch[J]. Yakugaku Zasshi Journal of the Pharmaceutical Society of Japan,1977,97(1):109−111.
    [3]
    柳琪, 滕薇, 苏本玉, 等. 桃花营养元素的分析与开发探讨[J]. 氨基酸和生物资源,1996,18(4):31−33. [LIU Q, TENG W, SUB Y, et al. Analysis of nutrition elements in peach blossom and its potential application[J]. Amino Acids and Biotic Resources,1996,18(4):31−33.
    [4]
    杨凤田, 张雅玮, 李顺, 等. 油菜蜂花粉黄酮提取物抗氧化性测定及在色拉米中的应用[J]. 食品工业科技,2016,37(15):121−124,128. [YANG F T, ZHANG Y W, LI S, et al. Antioxidation of rape bee pollen flavonoid extracts and application in salami[J]. Science and Technology of Food Industry,2016,37(15):121−124,128.
    [5]
    KOPUSTINSKIENE D M, JAKSTAS V, SAVICKAS A, et al. Flavonoids as anticancer agents[J]. Nutrients,2020,12(2):457. doi: 10.3390/nu12020457
    [6]
    XIE J H, DONG C J, NIE S P, et al. Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocaryapaliurus (Batal. ) Iljinskaja leaves[J]. Food Chemistry,2015,186:97−105. doi: 10.1016/j.foodchem.2014.06.106
    [7]
    KIM Y H, YANG H E, PARK B K, et al. The extract of the flowers of Prunus persica, a new cosmetic ingredient, protects against solar ultraviolet-induced skin damage in vivo[J]. Journal of Cosmetic Science,2002,53(1):27−34.
    [8]
    刘杰超, 张春岭, 吕真真, 等. 桃花中总酚和总黄酮的提取及抗氧化活性研究[J]. 食品安全质量检测学报,2013,4(6):1750−1756. [LIU J C, ZHANG C L, LV Z Z, et al. Extraction of total phenolics and flavanoids from peach blossomsand their antioxidant activity[J]. Journal of Food Safety and Quality,2013,4(6):1750−1756.
    [9]
    梁永锋. 桃花中黄酮含量的测定及超声波辅助下提取工艺优化[J]. 江苏农业科学,2016,44(9):329−331. [LIANG Y F. Determination of flavonoid contents in peach blossom and optimization of ultrasonic assisted extraction process[J]. Jiangsu Agricultural Sciences,2016,44(9):329−331.
    [10]
    曾臻, 刘后根, 洪艳平, 等. 大孔树脂纯化桃花总黄酮工艺及抗氧化性研究[J]. 江西农业大学学报,2017,39(1):182−189. [ZENG Z, LIU H G, HONG Y P, et al. A Study on purification of total flavonoids from Prunus persica by macroporousresin and their antioxidant activity[J]. Acta Agriculturae Universitatis Jiangxiensis,2017,39(1):182−189.
    [11]
    高洪坤, 孙嘉晨, 侯磊磊, 等. 乙醇法提取桃花精油的工艺研究及桃花精油的成分分析[J]. 生物资源,2018,40(2):182−185. [GAO H K, SUN J C, HOU L L, et al. Extraction of peach blossom essential oil by ethanol and analysis of its components[J]. Biotic Resources,2018,40(2):182−185.
    [12]
    KARAKATSANIS A, LIAKOPOULOU-KYRIAKIDES M. Comparison of PEG/fractionated dextran and PEG/industrial gradedextran aqueous two-phase systems for the enzymic hydrolysis ofstarch[J]. Journal of Food Engineering,2007,80(4):1213−1217. doi: 10.1016/j.jfoodeng.2006.09.011
    [13]
    范芳. 双水相萃取技术的应用进展[J]. 化学与生物工程,2011,28(7):16−20. [FAN F. Application development of aqueous two-phase extraction technology[J]. Chemistry & Bioengineering,2011,28(7):16−20. doi: 10.3969/j.issn.1672-5425.2011.07.004
    [14]
    XIE X, ZHU D, ZHANG W, et al. Microwave-assisted aqueous two-phase extraction coupled with high performance liquid chromatography for simultaneous extraction and determination of four flavonoids in Crotalaria sessiliflora L.[J]. Industrial Crops and Products,2017,95:632−642. doi: 10.1016/j.indcrop.2016.11.032
    [15]
    YANG S X, LIU B, TANG M, et al. Extraction of flavonoids from Cyclocarya paliurus (Juglandaceae) leaves using ethanol/salt aqueous two-phasesystem coupled with ultrasonic[J]. Journal of Food Processing and Preservation,2020,44(6):e14469.
    [16]
    邹维, 崔恩浩, 丁岗芯, 等. 聚能超声-醇盐双水相耦合提取藜麦总黄酮[J]. 食品研究与开发,2021,42(4):83−89. [ZOU W, CUI E H, DING G X, et al. Extraction of total flavonoids from quinoa by polymeric ultrasound-alcohol combined with two-phase extraction[J]. Food Research and Development,2021,42(4):83−89.
    [17]
    ALBERTTSON P A. Partition of cell particles and macromolecules [M]. New York: Wiley Publishing, 1971.
    [18]
    李敏, 何亚萍, 柴娟. 柑橘皮总黄酮的提取及抗氧化性研究[J]. 应用化工,2016,45(3):501−503. [LI M, HE Y P, CHAI J. Study on the extraction of total flavonoids and antioxidantactivity from citrus peel[J]. Applied Chemical Industry,2016,45(3):501−503.
    [19]
    郭莹, 周颖, 毕海丹, 等. 响应面优化超声波-微波协同提取凤眼莲黄酮工艺及其不同部位黄酮抗氧化活性分析[J]. 食品工业科技,2019,40(1):168−174,180. [GUO Y, ZHOU Y, BI H D, et al. Optimization of ultrasonic-microwave synergistic extraction of flavonoidsfrom Eichhornia crassipes by response surface methodology andanalysis of antioxidant activity of flavonoids from its different parts[J]. Science and Technology of Food Industry,2019,40(1):168−174,180.
    [20]
    OLUWASEUN R A, NOUR H A, OLUSEGUN A O. Optimization ofmicrowave-assisted extraction of flavonoids and antioxidants fromVernonia amygdalina leaf using response surface methodology[J]. Food and Bioproducts Processing,2018,107(1):36−48.
    [21]
    石玉平, 卢挺, 王永宁. 油菜蜂花粉中黄酮类物质清除羟基自由基的研究[J]. 食品科学,2004,25(11):300−302. [SHI Y P, LU T, WANG Y N. Studies on the hydroxy-group free radical eliminated of flavonoidsof Elaeagnus angustifoliaL flowrse[J]. Food Science,2004,25(11):300−302. doi: 10.3321/j.issn:1002-6630.2004.11.079
    [22]
    许远, 魏和平, 吴彦, 等. 响应面优化襄荷总黄酮提取及抗氧化研究[J]. 食品工业科技,2015,36(5):233−239. [XU Y, WEI H P, WU Y, et al. Study on optimization of extraction of total flavonoids fromZingiber strioatum by response surface methodologyand its antioxidant activity[J]. Science and Technology of Food Industry,2015,36(5):233−239.
    [23]
    陈建福, 胡泽杰, 潘诗玲, 等. 超声波辅助双水相提取胡萝卜叶总黄酮的工艺研究[J]. 河南工业大学学报(自然科学版),2018,39(1):72−77. [CHEN J F, HU Z J, PAN S L, et al. Optimization of ultrasonic-assisted aqueous two-phase extraction of total flavonoids from carrot leaves[J]. Journal of Henan University of Technology(Natural Science Edition),2018,39(1):72−77.
    [24]
    党金宁, 祁小妮, 李振亮, 等. 乙醇/硫酸铵双水相体系提取蕨麻多糖及其抑菌抗氧化活性[J]. 食品工业科技,2018,39(5):191−196,202. [DANG J N, QI X N, LI Z L, et al. Extraction of polysaccharide by ethanol /ammonium sulphate aqueous two-phase system from the Argentina anserina and its antibacterial and antioxidant activity[J]. Science and Technology of Food Industry,2018,39(5):191−196,202.
    [25]
    邹玲, 周新萍, 白红进. 枣叶中黄酮类化合物含量及其动态变化[J]. 中国实验方剂学杂志,2017,23(17):63−67. [ZOU L, ZHOU X P, BAI H J. Flavonoid content and its dynamic changes in jujube leaves[J]. Chinese Journal of Experimental Traditional Medical Formulae,2017,23(17):63−67.
    [26]
    刘萍. 罗布麻花、果实黄酮类含量为最佳采收期的确定[J]. 吉林农业大学学报,2010,32(3):277−279. [LIU P. Determination of the optimum harvest time for flavonoid content in flowers and fruit of Apocynum venetum[J]. Journal of Jilin Agricultural University,2010,32(3):277−279.
    [27]
    秦晶晶, 钱慧琴, 赵媛, 等. 柿叶总黄酮提取工艺优化及其抗氧化活性[J]. 食品工业科技,2020,41(13):32−38,45. [QIN J J, QIAN H Q, ZHAO Y, et al. Optimization of the extraction technology of total flavonoids and in vitro antioxidant activity of extract from persimmon leaves[J]. Science and Technology of Food Industry,2020,41(13):32−38,45.
    [28]
    杜丽娟, 苏秀芳, 黄成银. 余甘子叶总黄酮的超声波法提取工艺优化及其抗氧化能力研究[J]. 食品与机械,2020,36(3):185−189,193. [DULJ, SUX F, HUANG C Y. Optimization of ultrasonic-assisted extraction of total flavonoids from leaves of Phyllanthus emblica and its antioxidant capacity[J]. Food and Machinery,2020,36(3):185−189,193.
    [29]
    朱会霞. 覆盆子黄酮抗氧化活性研究[J]. 现代食品科技,2012,28(10):1301−1305. [ZHU H X. Study on the antioxidant activity of raspberry flavones[J]. Modern Food Science and Technology,2012,28(10):1301−1305.
    [30]
    黄琼, 黄晓梅. 玫瑰茄总黄酮超声波-微波协同提取及抗氧化活性[J]. 热带作物学报,2020,41(6):1242−1250. [HUANG Q, HUANG X M. Ultrasound-microwave assisted extraction and antioxidant activity of total flavonoids from Hibiscus sabdariffa L doi: 10.3969/j.issn.1000-2561.2020.06.024

    J]. Chinese Journal of Tropical Crops,2020,41(6):1242−1250. doi: 10.3969/j.issn.1000-2561.2020.06.024
    [31]
    孙泽飞. 牡丹花类黄酮成分及抗氧化能力分析 [D]. 杨凌: 西北农林科技大学, 2015.

    SUN Z F. Studies on flavonoids composition of the peony and its antioxidant activity analysis [D]. Yangling: Northwest A & F University, 2015.
    [32]
    李玲, 闫旭宇. 野葛花黄酮和花青素的提取及抗氧化性研究[J]. 食品研究与开发,2018,39(20):23−28. [LI L, YAN X Y. Extraction and antioxidant activity of flavonoids and anthocyanins from Flos puerariae[J]. Food Research and Development,2018,39(20):23−28. doi: 10.3969/j.issn.1005-6521.2018.20.005
  • Cited by

    Periodical cited type(14)

    1. 刘非凡,温纪平,展小彬,石松业,李柯新,唐浩洁. 冷等离子体处理在食品中的应用研究进展. 食品研究与开发. 2024(12): 181-188 .
    2. 闵照永. 等离子体活化水及微波协同处理对鲜湿面片特性的影响. 食品科技. 2024(06): 180-186 .
    3. 高婷,尹凯静,邵栋梁,赵丹丹,戴文娜. 低温等离子体技术杀灭食源性致病菌的研究进展. 农产品加工. 2024(14): 100-103 .
    4. 方镇洲,杨体园,赵玲艳,邓洁红. 低温等离子体处理对华容大叶芥菜贮藏品质的影响. 食品安全质量检测学报. 2024(20): 257-262 .
    5. 张腾,江昊. 超声渗透等离子活化水对香蕉切片鲜切品质的影响. 包装工程. 2023(05): 65-74 .
    6. 萧文宇,吴迅,黄显斌,李玲,何志平,郭俭. 低温等离子体活化水对蓝莓表面微生物抑制作用及其贮藏品质的影响. 食品工业科技. 2023(08): 359-365 . 本站查看
    7. 颜心怡,李锦晶,李赤翎,吴金鸿,俞健,王发祥,刘永乐,李向红. 冷等离子体技术对食品组分的影响及其作用机制. 食品工业科技. 2023(12): 445-454 . 本站查看
    8. 李芮,宋雅琪,周丹丹,屠康. 等离子体活化水对鲜切莲藕杀菌及保鲜的影响. 食品与生物技术学报. 2023(10): 30-40 .
    9. 田方,徐咏菁,孙志栋,周琦,王志远,华镇南,蔡路昀. 低温等离子体处理对鲜切猕猴桃片微观结构及理化特性的影响. 食品与发酵工业. 2023(21): 167-174 .
    10. 赵莹,严龙飞,严文静,章建浩. 低温等离子体活化水与介质阻挡放电联合处理对草莓冷杀菌效果及品质的影响. 食品科学. 2022(17): 105-116 .
    11. 韩扬,朱成志,李沁雨,李立,马新新,赵志军,包怡红. ε-聚赖氨酸复合保鲜剂对鸡毛菜品质及微生物的影响. 食品与发酵工业. 2022(18): 205-212 .
    12. 白亚龙,廖小艳,崔妍. 消除鲜食生菜中细菌污染的研究进展. 食品科学. 2022(19): 367-374 .
    13. 相启森,张嵘,杜桂红,王利敏,蒋爱民. 等离子体活化水对沙门氏菌的灭活作用及机制研究. 食品工业科技. 2021(08): 138-143 . 本站查看
    14. 翟娅菲,田佳丽,相启森,禹晓,申瑞玲,王章存. 非热加工技术在果蔬保鲜中的应用. 食品工业. 2021(05): 327-332 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (491) PDF downloads (42) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return