Citation: | HAN Rui, WU Qiong, ZHAO Xin, et al. Establishment of Cysteine Detection Method in Food Based on Fluorescent Probe[J]. Science and Technology of Food Industry, 2022, 43(4): 305−311. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060066. |
[1] |
ANTON R, BARLOW S, BOSKOU D, et al. Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) to review the toxicology of a number of dyes illegally present in food in the EU[J]. The EFSA Journal,2005,263:1−71.
|
[2] |
CHEN X, ZHOU Y, PENG X, et al. Fluorescent and colorimetric probes for detection of thiols[J]. Chemical Society Reviews,2010,39(6):2120−2135. doi: 10.1039/b925092a
|
[3] |
WU B, XUE T, HE Y. Design of activatable red-emissive assay for cysteine detection in aqueous medium with aggregation induced emission characteristics[J]. Chinese Chemical Letters,2021,32(2):932−937. doi: 10.1016/j.cclet.2020.03.047
|
[4] |
CHANG Y, QIN H, WANG X, et al. Visible and reversible restrict of molecular configuration by copper ion and pyrophosphate[J]. ACS Sensors,2020,5(8):2438−2447. doi: 10.1021/acssensors.0c00619
|
[5] |
YANG M, FAN J, DU J, et al. Small-molecule fluorescent probes for imaging gaseous signaling molecules: Current progress and future implications[J]. Chemical Science,2020,11(20):5127−5141. doi: 10.1039/D0SC01482F
|
[6] |
REN H, HUO F, ZhANG Y, et al. An NIR ESIPT-based fluorescent probe with large stokes shift for specific detection of Cys and its bioimaging in cells and mice[J]. Sensors and Actuators B:Chemical,2020,319:128248. doi: 10.1016/j.snb.2020.128248
|
[7] |
QIAN M, XIA J, ZHANG L, et al. Rationally modifying the dicyanoisophorone fluorophore for sensing cysteine in living cells and mice[J]. Sensors and Actuators B:Chemical,2020,321:128441. doi: 10.1016/j.snb.2020.128441
|
[8] |
LI Y, HE X, HUANG Y, et al. Development of a water-soluble near-infrared fluorescent probe for endogenous cysteine imaging[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,226:117544. doi: 10.1016/j.saa.2019.117544
|
[9] |
JUNG H S, CHEN X, KIM J S, et al. Recent progress in luminescent and colorimetric chemosensors for detection of thiols[J]. Chemical Society Reviews,2013,42(14):6019−6031. doi: 10.1039/c3cs60024f
|
[10] |
YIN C X, XIONG K M, HUO F J, et al. Fluorescent probes with multiple binding sites for the discrimination of Cys, Hcy, and GSH[J]. Angewandte Chemie International Edition,2017,56(43):13188−13198. doi: 10.1002/anie.201704084
|
[11] |
GUO B, PAN X, LIU Y, et al. A reversible water-soluble naphthalimide-based chemosensor for imaging of cellular copper(II) ion and cysteine[J]. Sensors and Actuators B:Chemical,2018,256:632−638. doi: 10.1016/j.snb.2017.09.196
|
[12] |
ZHANG Y, YAO W, LIANG D, et al. Selective detection and quantification of tryptophan and cysteine with pyrenedione as a turn-on fluorescent probe[J]. Sensors and Actuators B:Chemical,2018,259:768−774. doi: 10.1016/j.snb.2017.12.059
|
[13] |
SHARMA P, KUMAR K, KAUR S, et al. Near-IR discriminative detection of H2S and cysteine with 7-nitro-2, 1, 3-benzoxadiazole-perylenediimide conjugate in water, live cells and solid state: mimicking IMP, INH and NOR/OR complimentary logic[J]. Journal of Photochemistry and Photobiology A:Chemistry,2020,388:112151. doi: 10.1016/j.jphotochem.2019.112151
|
[14] |
DAI C G, LIU X L, DU X J, et al. Two-input fluorescent probe for thiols and hydrogen sulfide chemosensing and live cell imaging[J]. ACS Sensors,2016,1(7):888−895. doi: 10.1021/acssensors.6b00291
|
[15] |
XUE H, YU M, HE K, et al. A novel colorimetric and fluorometric probe for biothiols based on MnO2 NFs-Rhodamine B system[J]. Analytica Chimica Acta,2020,1127:39−48. doi: 10.1016/j.aca.2020.06.039
|
[16] |
ZHANG H, LI W, CHEN J, et al. Simultaneous detection of Cys/Hcy and H2S through distinct fluorescence channels[J]. Analytica Chimica Acta,2020,1097:238−244. doi: 10.1016/j.aca.2019.11.029
|
[17] |
WANG J, LI B, ZHAO W, et al. Two-photon near infrared fluorescent turn-on probe toward cysteine and its imaging applications[J]. ACS Sensors,2016,1(7):882−887. doi: 10.1021/acssensors.5b00271
|
[18] |
ZHAO X, JI H, HASRAT K, et al. A mitochondria-targeted single fluorescence probe for separately and continuously visualizing H2S and Cys with multi-response signals[J]. Analytica Chimica Acta,2020,1107:172−182. doi: 10.1016/j.aca.2020.02.017
|
[19] |
DAI Y, ZHENG Y, XUE T, et al. A novel fluorescent probe for rapidly detection cysteine in cystinuria urine, living cancer/normal cells and BALB/c nude mice[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,225:117490. doi: 10.1016/j.saa.2019.117490
|
[20] |
CARDOSO I C S, AMORIM A L, QUEIRÓS C, et al. Microwave-assisted synthesis and spectroscopic properties of 4′-substituted rosamine fluorophores and naphthyl analogues[J]. European Journal of Organic Chemistry,2012,2012(29):5810−5817. doi: 10.1002/ejoc.201200783
|
[21] |
CHENG J, SONG J, NIU H, et al. A new rosamine-based fluorescent chemodosimeter for hydrogen sulfide and its bioimaging in live cells[J]. New Journal Chemistry,2016,40(7):6384−6388. doi: 10.1039/C6NJ00177G
|
[22] |
YANG L, NIU J Y, SUN R, et al. Rosamine with pyronine-pyridinium skeleton: unique mitochondrial targetable structure for fluorescent probes[J]. Analyst,2018,143(8):1813−1819. doi: 10.1039/C7AN02041D
|
[23] |
LEEN V, YUAN P, WANG L, et al. Synthesis of meso-halogenated BODIPYs and access to meso-substituted analogues[J]. Organic Letters,2012,14(24):6150−6153. doi: 10.1021/ol3028225
|
[24] |
LIU Y, LV X, HOU M, et al. Selective fluorescence detection of cysteine over homocysteine and glutathione based on a cysteine-triggered dual michael addition/retro-aza-aldol cascade reaction[J]. Analytical Chemistry,2015,87(22):11475−11483. doi: 10.1021/acs.analchem.5b03286
|
[25] |
YANG L, NIU J Y, SUN R, et al. The pH-influenced PET processes between pyronine and different heterocycles[J]. Organic & Biomolecular Chemistry,2017,15(30):8402−8409.
|
[26] |
CHEN T, PEI X, YUE Y, et al. An enhanced fluorescence sensor for specific detection Cys over Hcy/GSH and its bioimaging in living cells[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2019,209:223−237. doi: 10.1016/j.saa.2018.10.049
|
[27] |
LIU K, GU H, SUN Y, et al. A novel rosamine-based fluorescent probe for the rapid and selective detection of cysteine in BSA, water, milk, cabbage, radish, apple, and pea[J]. Food Chemistry,2021,356:129658. doi: 10.1016/j.foodchem.2021.129658
|
[28] |
SONG H, ZHANG J, WANG X, et al. A novel “turn-on” fluorescent probe with a large stokes shift for homocysteine and cysteine: Performance in living cells and zebrafish[J]. Sensors and Actuators B:Chemical,2018,259:232−240.
|
[29] |
HE L, YANG X, XU K, et al. Improved aromatic substitution–rearrangement-based ratiometric fluorescent cysteine-specific probe and its application of real-time imaging under oxidative stress in living zebrafish[J]. Analytical Chemistry,2017,89(17):9567−9573. doi: 10.1021/acs.analchem.7b02649
|
[30] |
ARROYO I J, HU R, TANG B Z, et al. 8-Alkenylborondipyrromethene dyes. general synthesis, optical properties, and preliminary study of their reactivity[J]. Tetrahedron,2011,67(38):7244−7250. doi: 10.1016/j.tet.2011.07.067
|
1. |
吕欣然,王淑娟,张丹,朱婷婷,孙翔宇,马婷婷. 不同剂量电子束辐照杀菌处理对黑果腺肋花楸果汁品质的影响. 食品科学. 2025(05): 272-280 .
![]() | |
2. |
兰天,赵沁雨,王家琪,孙翔宇,马婷婷. 益生菌发酵猕猴桃果汁的贮藏特性及货架期预测. 食品工业科技. 2024(05): 301-308 .
![]() | |
3. |
张海军,李媛媛,钟祥静. 超高压灭菌技术在食品加工中的应用探讨. 粮油与饲料科技. 2024(02): 10-12 .
![]() | |
4. |
李媛媛,张海军,钟祥静. 基于超高压灭菌技术的农产品加工过程质量控制研究. 南方农机. 2024(17): 170-173 .
![]() | |
5. |
赵佳宇,易宗伟,蔡文超,马佳佳,王玉荣,单春会,郭壮. 动态超高压微射流技术对红枣酒品质的影响. 中国酿造. 2024(09): 147-151 .
![]() | |
6. |
程婧祺,秦雪,邱月,关宁,廖江,余志宝,裴晓燕,杨鑫焱,姜毓君,满朝新. 预测微生物学模型在乳及乳制品中的应用. 中国乳品工业. 2024(09): 50-55 .
![]() | |
7. |
张丽娟,邹波,肖更生,徐玉娟,余元善,吴继军,李璐. 不同打浆及杀菌处理对荔枝浆品质的影响. 食品工业科技. 2023(07): 329-336 .
![]() | |
8. |
朱卫芳,黄兰淇,张颂函,马琳,陈建波,方朝阳. 25%吡唑醚菌酯悬浮剂在蓝莓中的残留行为及膳食风险评估. 农药科学与管理. 2023(01): 47-53 .
![]() | |
9. |
马琳,赵颖,陈建波,赵莉. 基于胶体金免疫层析法快速检测蓝莓中的百菌清残留. 农药学学报. 2023(02): 435-443 .
![]() | |
10. |
高惠颖,宋娟,景缘,于泳渤,张瑞,刘静,胡雨晴,吕长鑫,马志恒. NFC冻梨苹果汁配方优化及其贮藏品质. 食品研究与开发. 2023(11): 93-99 .
![]() | |
11. |
武正芳,马意龙,金诺,胡飞,章建国,魏兆军. 臭氧对食品加工中多酚影响的研究进展. 农产品加工. 2023(18): 79-82+92 .
![]() | |
12. |
赵倩,谢彦纯,赵冲. 百香果红茶饮料的研制. 中国果菜. 2023(12): 7-13 .
![]() | |
13. |
马琳,朱卫芳,占绣萍,陈建波,赵莉. 嘧霉胺在蓝莓中的残留行为及膳食风险评估. 农药学学报. 2022(04): 884-889 .
![]() | |
14. |
任博文,董璇,何珊. 超高压技术在食品应用中的研究进展. 农产品加工. 2022(16): 61-63+67 .
![]() | |
15. |
黄丽萍,靳学远,谭演清,陈涛,王华民. 超高压微射流处理对火龙果汁微生物指标及理化特性的影响. 食品安全质量检测学报. 2022(20): 6563-6568 .
![]() | |
16. |
宣晓婷,陈思媛,乐耀元,尚海涛,曾昊溟,凌建刚,张文媛. 高水分南美白对虾虾干货架期预测模型的构建. 农产品加工. 2022(19): 78-82+90 .
![]() | |
17. |
张丽娟,邹波,肖更生,徐玉娟,余元善,吴继军,温靖,李璐. 枸杞原浆低氧打浆联合不同杀菌技术的比较分析. 现代食品科技. 2022(11): 158-165 .
![]() |