PEI Wenqing, LV Lunan, WANG Jingyu, et al. Optimization of Extraction of Polyphenols and Flavonoids from Papaya Peel and Its Anti-tyrosinase and Anti-pancreatic Lipase[J]. Science and Technology of Food Industry, 2022, 43(1): 188−195. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040155.
Citation: PEI Wenqing, LV Lunan, WANG Jingyu, et al. Optimization of Extraction of Polyphenols and Flavonoids from Papaya Peel and Its Anti-tyrosinase and Anti-pancreatic Lipase[J]. Science and Technology of Food Industry, 2022, 43(1): 188−195. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040155.

Optimization of Extraction of Polyphenols and Flavonoids from Papaya Peel and Its Anti-tyrosinase and Anti-pancreatic Lipase

More Information
  • Received Date: April 14, 2021
  • Available Online: November 05, 2021
  • The extract process of polyphenols and flavonoids from papaya peel were optimized and their antioxidant activity, anti-tyrosinase and anti-pancreatic lipase were evaluated. On the basis of single factor experiment, orthogonal experiment was used to study the influence of ultrasonic temperature, ultrasonic time, ethanol concentration and solid-liquid ratio on the contents of polyphenols, flavonoids from papaya peel. The scavenging ability of papaya peel on DPPH free radicals and ABTS free radicals and its inhibitory activity on tyrosinase and pancreatic lipase were measured. The optimal extraction conditions were obtained: Ultrasonic temperature 40 ℃, ultrasonic time 60 min, 60% ethanol, solid-liquid ratio 1:25 g/mL. Under the optimal conditions, the contents of polyphenols and flavonoids from papaya peel reached (82.00±0.65) mg/g and (162.76±2.82) mg/g, respectively. The scavenging rates of papaya peel on DPPH free radicals and ABTS free radicals reached (94.79%±0.10%) and (96.94%±0.23%), respectively. The inhibition rate of papaya peel on tyrosinase with L-Tyr and L-Dopa as the substrate reached (83.33%±6.80%) and (67.12%±0.32%), respectively. The inhibition rate of papaya peel on pancreatic lipase reached (82.78%±1.28%), indicating that papaya peel had strong antioxidant capacity, tyrosinase and pancreatic lipase inhibitory activity.
  • [1]
    IKRAM E H K, STANLEY R, NETZEL M, et al. Phytochemicals of papaya and its traditional health and culinary uses-a review[J]. J Food Composit Anal,2015,41:201−211. doi: 10.1016/j.jfca.2015.02.010
    [2]
    NGUYEN THAO TTS, PAUL N P, MARIE O, et al. Anticancer activity ofCarica papaya[J]. Mol Nutr Food Res J,2013,57:1613−4133.
    [3]
    OTSUKI N, DANG N H, KUMAGAI E, et al. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects[J]. J Ethnopharmacol,2010,127:760−767. doi: 10.1016/j.jep.2009.11.024
    [4]
    SILVA L, FIGUEIREDO E A T D, RICARDO N, et al. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil[J]. Food Chem,2014,143:398−404. doi: 10.1016/j.foodchem.2013.08.001
    [5]
    PATHAK P D, MANDAVGANE S A, KULKARNI B D. Waste to wealth: A case study of papaya peel[J]. Waste and Biomass Valorization,2019,10(6):1755−1766. doi: 10.1007/s12649-017-0181-x
    [6]
    JIANG G, FENG X, ZHAO C, et al. Development of biscuits supplemented with papaya seed and peel: Effects on physicochemical properties, bioactive compounds, in vitro absorption capacities and starch digestibility[J/OL] Journal of Food Science and Technology-Mysore, 2021. https://doi.org/10.1007/s13197-021-05143-z.
    [7]
    HIRAGA Y, ARA T, SATO N, et al. Metabolic analysis of unripe papaya(Carica papaya L.) to promote its utilization as a functional food[J]. Bioscience, Biotechnology, and Biochemistry,2021,85(5):1194−1204. doi: 10.1093/bbb/zbab014
    [8]
    REES J L. The genetics of human pigmentary disorders[J]. J Invest Dermatol,2011,131:E12−E13. doi: 10.1038/skinbio.2011.5
    [9]
    HEARING V J. Determination of melanin synthetic pathways[J]. J Invest Dermatol,2011,131:E8−E11. doi: 10.1038/skinbio.2011.4
    [10]
    CHENGS L, LIU R H, SHEU J N, et al. Toxicogenomics of kojic acid on gene expression profiling of A375 human malignant melanoma cells[J]. Biol Pharm Bull,2006,29:655−669. doi: 10.1248/bpb.29.655
    [11]
    GARCIA-CANOVAS F, AKBAR-SABOURY A. A comprehensive review on tyrosinase inhibitors[J]. Journal of Enzyme Inhibition and Medicinal Chemistry,2019,34(1):279−309. doi: 10.1080/14756366.2018.1545767
    [12]
    CHANG T S. An updated review of tyrosinase inhibitors[J]. International Journal of Molecular Sciences,2009,10:2440−2475. doi: 10.3390/ijms10062440
    [13]
    THOMEBY-ANDERSSON K, STERNER O, HANSSON C. Tyrosinase-mediated formation of a reactive quinone from the depigmenting agents, 4-tertbutyphenol and 4-tert-butyl-catechol[J]. Pigment Cell Res,2000,13:33−8. doi: 10.1034/j.1600-0749.2000.130107.x
    [14]
    柳伟, 肖雪, 葛珊珊, 等. 12种果皮多酚含量及其抗氧化活性研究[J]. 食品研究与开发,2016,37(14):25−29. [LIU Wei, XIAO Xue, GE Shanshan, et al. Study on the content of 12 kinds of total polyphenols in pericarp and its antioxidant activity[J]. Food Research and Development,2016,37(14):25−29. doi: 10.3969/j.issn.1005-6521.2016.14.008
    [15]
    MATSUDA M, SHIMOMURA I. Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases[J]. Reviews in Endocrine & Metabolic Disorders,2014,15(1):1−10.
    [16]
    BIRARI R B, BHUTANI K K. Pancreatic lipase inhibitors from natural sources: unexplored potential[J]. Drug Discovery Today,2007,12(19-20):879−889. doi: 10.1016/j.drudis.2007.07.024
    [17]
    TISS M. Fermented soy milk prepared using kefir grains prevents and ameliorates obesity, type 2 diabetes, hyperlipidemia and liver-kidney toxicities in HFFD-rats[J]. Journal of Functional Foods,2020,67(10):38−49.
    [18]
    GONDOIN A, GRUSSU D, STEWART D, et al. White and green tea polyphenols inhibit pancreatic lipase in vitro[J]. Food Res Int,2010,43:1537−1544. doi: 10.1016/j.foodres.2010.04.029
    [19]
    HE Q, LV Y, YAO K. Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase[J]. Food Chem,2007,101:1178−1182. doi: 10.1016/j.foodchem.2006.03.020
    [20]
    YAP J Y, HII C L, ONG S P, et al. Effects of drying on total polyphenols content and antioxidant properties of Carica papaya leaves[J]. Journal of the Science of Food and Agriculture,2020,100(7):2932−2937. doi: 10.1002/jsfa.10320
    [21]
    刘冉, 程霜, 王雷, 等. 不同品种甘薯叶提取物抗氧化及对α-葡萄糖苷酶抑制活性的研究[J]. 食品工业科技,2019,40(23):283−289. [LIU Ran, CHENG Shuang, WANG Lei, et al. Study on the antioxidant and α-glucosidase inhibitory activity of different varieties of sweet potato leaf extracts[J]. Science and Technology of Food Industry,2019,40(23):283−289.
    [22]
    NAM J S, JANG H L, RHEE Y H. Antioxidant activities and phenolic compounds of several tissues of pawpaw(Asimina triloba L. Dunal) grown in Korea[J]. Journal of Food Science,2017,82(8):1827−1833. doi: 10.1111/1750-3841.13806
    [23]
    YANG D, WANG L, ZHAI J, et al. Characterization of antioxidant, alpha-glucosidase and tyrosinase inhibitors from the rhizomes of Potentilla anserina L. and their structure-activity relationship[J]. Food Chemistry,2020:336.
    [24]
    于洋君, 伍菱, 何君竹, 等. 对羟基肉桂酸乙酯对胰脂肪酶的抑制作用及机理[J/OL]. 食品工业科技: 1−13 [2021-03-27] https://doi.org/10.13386/j.issn1002-0306.2020060193.

    YU Yangjun, WU Ling, HE Junzhu, et al. The inhibitory effect and mechanism of ethyl p-hydroxycinnamate on pancreatic lipase[J/OL]. Food Industry Science and Technology: 1−13 [2021-03-27] https://doi.org/10.13386/j.issn1002-0306.2020060193.
    [25]
    磨正遵, 商飞飞, 潘中田, 等. 响应面法优化超声波辅助提取广西大果山楂叶总黄酮工艺[J]. 南方农业学报,2018,49(5):986−992. [MO Zhengzun, SHANG Feifei, PAN Zhongtian, et al. Optimization of ultrasonic-assisted extraction of total flavonoids from Guangxi hawthorn leaves with response surface methodology[J]. Journal of Southern Agricultural Sciences,2018,49(5):986−992. doi: 10.3969/j.issn.2095-1191.2018.05.23
    [26]
    张锦华, 徐蔓, 白宝清, 等. 响应面法优化提取无花果干果中多酚和总黄酮物质及其抗氧化活性[J]. 食品工业科技,2018,39(16):183−190,212. [ZHANG Jinhua, XU Man, BAI Baoqing. et al. Optimized extraction of polyphenols and total flavonoids from dried fig fruits and their antioxidant activities by response surface methodology[J]. Science and Technology of Food Industry,2018,39(16):183−190,212.
    [27]
    JUNG J Y, PARK H M, YANG J K. Optimization of ethanol extraction of antioxidative phenolic compounds from torrefied oak wood (Quercus serrata) using response surface methodology[J]. Wood Science and Technology,2016,50(5):1037−1055. doi: 10.1007/s00226-016-0846-9
    [28]
    张静, 陶俊葓, 刘银, 等. 响应曲面法优化超声辅助提取芒果叶中总多酚和总黄酮工艺及抗氧化活性研究[J]. 云南民族大学学报(自然科学版),2020,29(6):527−534. [ZHANG Jing, TAO Junping, LIU Yin, et al. Optimization of ultrasonic-assisted extraction process and antioxidant activity of total polyphenols and total flavonoids from mango leaves using response surface methodology[J]. Journal of Yunnan University for Nationalities (Natural Science Edition),2020,29(6):527−534.
    [29]
    时羽杰, 肖徐, 李晶晶, 等. 核桃内种皮总黄酮的提取工艺优化及抗氧化性研究[J]. 食品工业科技,2021,42(2):192−198,209. [SHI Yujie, XIAO Xu, LI Jingjing, et al. Optimization of extraction process and antioxidant activity of total flavonoids in walnut inner seed coat[J]. Science and Technology of Food Industry,2021,42(2):192−198,209.
    [30]
    AMAROWICZ R, PEGG R B, RAHIMI P M, et al. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies[J]. Food Chem,2004,5:551−562.
    [31]
    ASGHAR N, NAQVI S A R, HUSSAIN Z, et al. Compositional difference in antioxidant and antibacterial activity of all parts of the Carica papaya using different solvents[J]. Chemistry Central Journal, 2016, 10(5).
    [32]
    张明, 帅希祥, 杜丽清, 等. 澳洲坚果青皮多酚提取工艺优化及其抗氧化活性[J]. 食品工业科技,2017,38(22):195−199. [ZHANG Ming, SHUAI Xixiang, DU Liqing, et al. Optimization of the extraction process of macadamia green peel polyphenols and their antioxidant activity[J]. Food Industry Science and Technology,2017,38(22):195−199.
    [33]
    陈嫣, 段振华, 刘艳, 等. 香芋皮多酚的超声提取工艺优化及其抗氧化活性[J]. 食品工业科技,2020,41(18):164−169. [CHEN Yan, DUAN Zhenhua, LIU Yan, et al. Optimization of ultrasonic extraction process of taro peel polyphenols and its antioxidant activity[J]. Science and Technology of Food Industry,2020,41(18):164−169.
    [34]
    LEE K T, KIM B J, KIM J H, et al. Biological screening of 100 plant extracts for cosmetic use(I): Inhibitory activities of tyrosinase and DOPA auto-oxidation[J]. International Journal of Cosmetic Science,1997,19(6):291−298. doi: 10.1111/j.1467-2494.1997.tb00193.x
    [35]
    OD EK P, DEENIN W, MALAKUL W, et al. Anti-obesity effect of Carica papaya in high-fat diet fed rats[J]. Biomedical Reports,2020,13(4):30−38.
  • Cited by

    Periodical cited type(13)

    1. 王乐,项海波,张丽. 高效液相色谱法测定食品接触用涂料中2-甲基咪唑、4-甲基咪唑和1-乙烯基咪唑的含量. 理化检验-化学分册. 2025(02): 213-218 .
    2. 崔艳华,黄牧坤,顾璇,李灿,陈同强. 气相色谱法同时测定止咳糖浆中5种化学污染物的含量. 理化检验-化学分册. 2025(02): 208-212 .
    3. 闵宇航,刘斯琪,余晓琴,李澍才,张丽平. SPE-UPLC-MS/MS同时测定食品中24种酸性工业染料. 食品工业科技. 2024(01): 284-294 . 本站查看
    4. 蔡吉祥,杨秋玉,黄伟,朱庆宁,赵海燕. 果糖普通法焦糖色素制备工艺优化及特性研究. 山东化工. 2024(01): 30-33+37 .
    5. 邬丹,李惠霖,陈肖阳,程相雷,朱邦栋,吴浪,沈幸,柴仲平,曾茂茂. 烤馕中晚期糖基化终末产物和4-甲基咪唑的生成规律研究进展. 食品安全质量检测学报. 2024(09): 84-92 .
    6. 蔡翠玲,李菊,席静,侯颖烨,曾广丰,谢建军,吴舒悦,王璐. 高效液相色谱-串联质谱法测定化妆品中3种甲基咪唑类化合物. 色谱. 2024(11): 1052-1058 .
    7. 余春平,马齐兵,许春芳,童雅琪. 响应面法优化肉桂酸钾卤肉防腐工艺. 江苏调味副食品. 2023(03): 24-30 .
    8. 顾虎,徐韵扬,张仲恺,秦鑫. 液质联用法测定纺织品中两种咪唑类物质. 针织工业. 2022(07): 69-72 .
    9. 周艳华,李涛,向俊,徐文泱. 固相萃取—超高效液相色谱—质谱法测定食用香精中3种甲基咪唑类物质. 食品与机械. 2022(10): 82-86+200 .
    10. 朱峰. 高效液相色谱法测定纺织品中两种咪唑类化合物. 中国纤检. 2022(11): 80-82 .
    11. 刘福建,卞晓静,崔劲松,李燕云. 纺织布烘干设备及湿度自动控制技术改进与应用. 中国纤检. 2022(12): 102-104 .
    12. 庞扬海,甄振鹏,高裕锋,黄敏兴,余构彬. 高效液相色谱串联质谱法测定食糖中4-甲基咪唑和2-甲基咪唑. 甘蔗糖业. 2021(03): 74-79 .
    13. 王彬潆,戴尽波,刘垚. 超高效液相色谱-串联质谱法同时测定客家娘酒中的2-甲基咪唑、4-甲基咪唑及5-羟甲基糠醛. 食品安全质量检测学报. 2021(22): 8703-8710 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (297) PDF downloads (33) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return