Citation: | LI Jiahao, ZHANG Shanying, REN Saihao, et al. Extraction and Characterization of Starch from Cowpea (Vigna unguiculata (L.) Walp.) [J]. Science and Technology of Food Industry, 2021, 42(20): 199−206. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030301. |
[1] |
Lonardi S, Munoz-Amatriain M, Liang Q, et al. The genome of cowpea (Vigna unguiculata [L.] Walp.) [J]. Plant Journal,2019,98(5):767−782. doi: 10.1111/tpj.14349
|
[2] |
Owade J O, Abong G, Okoth M, et al. A review of the contribution of cowpea leaves to food and nutrition security in East Africa[J]. Food Science and Nutrition,2019,8(1):36−47.
|
[3] |
Kongjaimun A, Kaga A, Tomooka N, et al. The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv. -gr. sesquipedalis[J]. Annals of Botany,2012,109(6):1185−1200. doi: 10.1093/aob/mcs048
|
[4] |
Ashogbon A O, Akintayo E T, Oladebeye A O, et al. Developments in the isolation, composition, and physicochemical properties of legume starches[J]. Critical Reviews in Food Science and Nutrition,2020:1−22.
|
[5] |
Oyeyinka S A, Kayitesi E, Adebo O A, et al. A review on the physicochemical properties and potential food applications of cowpea (Vigna unguiculata) starch[J]. International Journal of Food Science and Technology,2021,56(1):52−60. doi: 10.1111/ijfs.14604
|
[6] |
张正茂, 周颖. 5种豆类淀粉凝胶特性的比较研究[J]. 中国粮油学报,2019,34(3):38−44. [Zhang Z M, Zhou Y. Comparative study on starch gel properties of five kinds of legumes[J]. Journal of the Chinese Cereals and Oils Association,2019,34(3):38−44.
|
[7] |
Rengadu D, Gerrano A S, Mellem J J. Physicochemical and structural characterization of resistant starch isolated from Vigna unguiculata[J]. International Journal of Biological Macromolecules,2020,147:268−275. doi: 10.1016/j.ijbiomac.2020.01.043
|
[8] |
Ratnaningsih N, Harmayani E, Marsono Y. Physicochemical properties, in vitro starch digestibility, and estimated glycemic index of resistant starch from cowpea (Vigna unguiculata) starch by autoclaving-cooling cycles[J]. International Journal of Biological Macromolecules,2020,142:191−200. doi: 10.1016/j.ijbiomac.2019.09.092
|
[9] |
Ratnaningsih N, Suparmo, Harmayani E, et al. Composition, microstructure, and physicochemical properties of starches fromIndonesian cowpea (Vigna unguiculata) varieties[J]. International Food Research Journal,2016,23(5):2041−2049.
|
[10] |
王苗苗. 热加工对芸豆子叶细胞内含淀粉结构及体外消化性的影响机制研究[D]. 广州: 华南理工大学, 2019.
Wang M M. Mechanisic study for the structure features and digestion properties of starches in intact pinto bean cotyledon cells influenced by heating process[D]. South China University of Technology, 2019.
|
[11] |
Maniglia B C, Tapia-Blácido D R. Isolation and characterization of starch from babassu mesocarp[J]. Food Hydrocolloids,2016,55:47−55. doi: 10.1016/j.foodhyd.2015.11.001
|
[12] |
Nara S, Komiya T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch[J]. Starch-Stärke,1983,35(12):407−410.
|
[13] |
杨慧强, 白新鹏, 吕晓亚, 等. 菠萝蜜种子淀粉提取工艺及其物性的研究[J]. 食品科技,2016,41(3):237−242. [Yang H Q, Bai X P, Lv X Y, et al. Extraction process and physical properties of jackfruit seed starch[J]. Food Science and Technology,2016,41(3):237−242.
|
[14] |
Mohammadkhani A, Stoddard F L, Marshall D R, et al. starch extraction and amylose analysis from half seeds[J]. Starch-staerke,1999,51(2-3):62−66. doi: 10.1002/(SICI)1521-379X(199903)51:2<62::AID-STAR62>3.0.CO;2-G
|
[15] |
Contreras-Jiménez B, Torres-Vargas O L, Rodríguez-García M E. Physicochemical characterization of quinoa(Chenopodium quinoa) flour and isolated starch[J]. Food Chemistry,2019,298:1−7.
|
[16] |
Huang J, Schols H, Vansoest J, et al. Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yellow pea starches[J]. Food Chemistry,2007,101(4):1338−1345. doi: 10.1016/j.foodchem.2006.03.039
|
[17] |
Adebooye O C, Singh V. Physico-chemical properties of the flours and starches of two cowpea varieties(Vigna unguiculata (L.) Walp) [J]. Innovative Food Science and Emerging Technologies,2008,9(1):92−100. doi: 10.1016/j.ifset.2007.06.003
|
[18] |
Miranda J, Carvalho L, Vieira A, et al. Scanning electron microscopy and crystallinity of starches granules from cowpea, black and carioca beans in raw and cooked forms[J]. Food Science and Technology,2019,39(2):718−724.
|
[19] |
Kaptso G K, Njintang N Y, Nguemtchouin M G M, et al. Characterization of morphology and structural and thermal properties of legume flours: Cowpea (Vigna unguiculata L. Walp) and bambara groundnut (Vigna subterranea L. Verdc.) varieties[J]. International Journal of Food Engineering,2016,12(2):139−152. doi: 10.1515/ijfe-2014-0146
|
[20] |
Tinus T, Damour M, Van Riel V, et al. Particle size-starch-protein digestibility relationships in cowpea (Vigna unguiculata) [J]. Journal of Food Engineering,2012,113(2):254−264. doi: 10.1016/j.jfoodeng.2012.05.041
|
[21] |
Vanier N L, El Halal S L M, Dias A R G, et al. Molecular structure, functionality and applications of oxidized starches: A review[J]. Food Chemistry,2017,221:1546−1559. doi: 10.1016/j.foodchem.2016.10.138
|
[22] |
Agunbiade S O, Longe O G. The physico-functional characteristics of starches from cowpea (Vigna unguiculata), pigeon pea (Cajanus cajan) and yambean (Sphenostylis stenocarpa) [J]. Food Chemistry,1999,65(4):469−474. doi: 10.1016/S0308-8146(98)00200-3
|
[23] |
Kim Y, Woo K S, Chung H. Starch characteristics of cowpea and mungbean cultivars grown in Korea[J]. Food Chemistry,2018,263:104−111. doi: 10.1016/j.foodchem.2018.04.114
|
[24] |
Dankar I, Haddarah A, Omar F E L, et al. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction[J]. Food Chemistry,2018,260:7−12. doi: 10.1016/j.foodchem.2018.03.138
|
[25] |
Zhang N, Liu X, Yu L, et al. Phase composition and interface of starch-gelatin blends studied by synchrotron FTIR micro-spectroscopy[J]. Carbohydrate Polymers,2013,95(2):649−653. doi: 10.1016/j.carbpol.2013.03.045
|
[26] |
Quintero-Castañ o V D, Castellanos-Galeano F J, Á lvarez-Barreto C I, et al. Starch from two unripe plantains and esterified with octenyl succinic anhydride (OSA): Partial characterization[J]. Food Chemistry,2020,315:1−7.
|
[27] |
Souza D, Inacia D , Marcia D, et al. Isolation and characterization of starch from pitomba endocarp[J]. Food Research International,2019,124:181−187. doi: 10.1016/j.foodres.2018.06.032
|
[28] |
Bento J A C, Fidelis M C, De Souza Neto M A, et al. Physicochemical, structural, and thermal properties of "batata-de-teiú" starch[J]. International Journal of Biological Macromolecules,2020,145:332−340. doi: 10.1016/j.ijbiomac.2019.12.208
|
[29] |
Chen L, Tian Y, Sun B, et al. Measurement and characterization of external oil in the fried waxy maize starch granules using ATR-FTIR and XRD[J]. Food Chemistry,2018,242:131−138. doi: 10.1016/j.foodchem.2017.09.016
|
[30] |
Rolland-Sabaté A, Sánchez T, Buléon A, et al. Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources[J]. Food Hydrocolloids,2012,27(1):161−174. doi: 10.1016/j.foodhyd.2011.07.008
|
[31] |
Warren F J, Gidley M J, Flanagan B M. Infrared spectroscopy as a tool to characterize starch ordered structure-a joint FTIR-ATR, NMR, XRD and DSC study[J]. Carbohydrate Polymers,2016,139:35−42. doi: 10.1016/j.carbpol.2015.11.066
|
[32] |
Guo K, Liu T, Xu A, et al. Structural and functional properties of starches from root tubers of white, yellow, and purple sweet potatoes[J]. Food Hydrocolloids,2019,89:829−836. doi: 10.1016/j.foodhyd.2018.11.058
|
[33] |
Patindol J, Gu X, Wang Y. Chemometric analysis of the gelatinization and pasting properties of long-grain rice starches in relation to fine structure[J]. Starch-Stärke,2009,61(1):3−11.
|
[34] |
Franklin M E E, Pushpadass H A, Kumar B, et al. Physicochemical, thermal, pasting and microstructural characterization of commercial Curcuma angustifolia starch[J]. Food Hydrocolloids,2017,67:27−36. doi: 10.1016/j.foodhyd.2016.12.025
|
[35] |
Jamir K, Seshagirirao K. Isolation, characterization and comparative study of starches from selected Zingiberaceae species, a non-conventional source[J]. Food Hydrocolloids,2017,72:247−253. doi: 10.1016/j.foodhyd.2017.06.004
|
1. |
马骋,付冉,宿书芳,刘艳明,高敏. 高效液相色谱法测定婴幼儿配方奶粉中维生素B_2含量的不确定度评定. 现代食品. 2024(09): 209-214 .
![]() |