Citation: | JIANG Liming, TAO Yang, HAN Yongbin, et al. Effect of Moderate Electric Field on α-Amylase-Catalyzed Hydrolysis of Corn Starch[J]. Science and Technology of Food Industry, 2022, 43(1): 80−86. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030257. |
[1] |
REN F, WANG J, XIE F, et al. Applications of ionic liquids in starch chemistry: A review[J]. Green Chemistry,2020,22(7):2162−2183. doi: 10.1039/C9GC03738A
|
[2] |
FAN Y, PICCHIONI F. Modification of starch: A review on the application of “green” solvents and controlled functionalization[J]. Carbohydrate Polymers,2020,241:116350. doi: 10.1016/j.carbpol.2020.116350
|
[3] |
GILET A, QUETTIER C, WIATZ V, et al. Unconventional media and technologies for starch etherification and esterification[J]. Green Chemistry,2018,20(6):1152−1168. doi: 10.1039/C7GC03135A
|
[4] |
LIU Q Z, ZHANG H, DAI H Q, et al. Inhibition of starch digestion: The role of hydrophobic domain of both α-amylase and substrates[J]. Food Chemistry,2021,341:128211. doi: 10.1016/j.foodchem.2020.128211
|
[5] |
SADEGHIAN M S F, ARIAEENEJAD S, SALAMI M, et al. Improving the quality of gluten-free bread by a novel acidic thermostable α-amylase from metagenomics data[J]. Food Chemistry,2021,352:129307. doi: 10.1016/j.foodchem.2021.129307
|
[6] |
马福强. 耐高温α-淀粉酶在酒精生产中的应用[J]. 酿酒科技,2001(3):42−43. [MA F Q. Application of high temperature resistant α-amylase in the production of alcohol[J]. Liquor-making Science and Technology,2001(3):42−43. doi: 10.3969/j.issn.1001-9286.2001.03.015
|
[7] |
OHSHIMA T, TAMURA T, SATO M. Influence of pulsed electric field on various enzyme activities[J]. Journal of Electrostatics,2007,65(3):156−161. doi: 10.1016/j.elstat.2006.07.005
|
[8] |
LU C, YIN Y. Pulsed electric field treatment combined with commercial enzymes converts major ginsenoside Rb1 to minor ginsenoside Rd[J]. Innovative Food Science & Emerging Technologies,2014,22:95−101.
|
[9] |
SAMARANAYAKE C P, SASTRY S K. In-situ activity of α-amylase in the presence of controlled-frequency moderate electric fields[J]. LWT-Food Science & Technology,2018,90:448−454.
|
[10] |
DURHAM E K, SASTRY S K. Moderate electric field treatment enhances enzymatic hydrolysis of cellulose at below-optimal temperatures[J]. Enzyme and Microbial Technology 2020, 142: 109678.
|
[11] |
LI D, TAO Y, SHI Y, et al. Preparation of porous starch by α-amylase-catalyzed hydrolysis under a moderate electric field[J]. LWT-Food Science & Technology,2021,137:110449.
|
[12] |
VARELLA V, CONCONE B, SENISE J, et al. Continuous enzymatic cooking and liquefaction of starch using the technique of direct resistive heating[J]. Biotechnology and Bioengineering,1984,26(7):654−657. doi: 10.1002/bit.260260703
|
[13] |
LI D, JIANG L, TAO Y, et al. Enhancement of efficient and selective hydrolysis of maize starch via induced electric field[J]. LWT, 2021, 143: 111190.
|
[14] |
WANG D, MA X, YAN L, et al. Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics[J]. Carbohydrate Polymers,2017,175:47−54. doi: 10.1016/j.carbpol.2017.06.093
|
[15] |
MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry,1959,31(3):426−428. doi: 10.1021/ac60147a030
|
[16] |
LI D, WU Z, WANG P, et al. Effect of moderate electric field on glucoamylase-catalyzed hydrolysis of corn starch: Roles of electrophoretic and polarization effects[J]. Food Hydrocolloids,2022,122:107120. doi: 10.1016/j.foodhyd.2021.107120
|
[17] |
KNIRSCH M C, SANTOS C A D, VICENTE A A M D O S, et al. Ohmic heating-a review[J]. Trends in Food Science & Technology, 2010, 21(9): 436−441.
|
[18] |
BARBA F J, PARNIAKOV O, PEREIRA S A, et al. Current applications and new opportunities for the use of pulsed electric fields in food science and industry[J]. Food Research International,2015,77:773−798. doi: 10.1016/j.foodres.2015.09.015
|
[19] |
SAMARANAYAKE C P, SASTRY S K. Effect of moderate electric fields on inactivation kinetics of pectin methylesterase in tomatoes: The roles of electric field strength and temperature[J]. Journal of Food Engineering,2016,186:17−26. doi: 10.1016/j.jfoodeng.2016.04.006
|
[20] |
LU X, LUO Z, YU S, et al. Lipase-catalyzed synthesis of starch palmitate in mixed ionic liquids[J]. Journal of Agricultural and Food Chemistry,2012,60(36):9273−9279. doi: 10.1021/jf303096c
|
[21] |
GITERU S G, OEY I, ALI M A. Feasibility of using pulsed electric fields to modify biomacromolecules: A review[J]. Trends in Food Science & Technology,2018,72:91−113.
|
[22] |
LIU Z, WANG C, LIAO X, et al. Measurement and comparison of multi-scale structure in heat and pressure treated corn starch granule under the same degree of gelatinization[J]. Food Hydrocolloids,2020,108:106081. doi: 10.1016/j.foodhyd.2020.106081
|
[23] |
LI M N, CHEN H Q, BAO Z. Effects of the combination of repeated heat-moisture treatment and compound enzymes hydrolysis on the structural and physicochemical properties of porous wheat starch[J]. Food Chemistry,2019,274:351−359. doi: 10.1016/j.foodchem.2018.09.034
|
[24] |
BING Z, CUI D, LIU M, et al. Corn porous starch: Preparation, characterization and adsorption property[J]. International Journal of Biological Macromolecules,2011,50(1):250−256.
|
[25] |
XUE L, MA Y, YANG N, WEI H. Modification of corn starch via innovative contactless thermal effect from induced electric field[J]. Carbohydrate Polymers,2021,255:117378. doi: 10.1016/j.carbpol.2020.117378
|
[26] |
AN H J, KING J M. Pasting properties of ohmically heated rice starch and rice flours[J]. Journal of Food Science,2010,71(7):C437−C441.
|
[27] |
WANG S, COPELAND L. Effect of acid hydrolysis on starch structure and functionality: A review[J]. Critical Reviews in Food Science and Nutrition,2015,55(8):1081−1097. doi: 10.1080/10408398.2012.684551
|
[28] |
LI N, CAI Z, GUO Y, et al. Hierarchical structure and slowly digestible features of rice starch following microwave cooking with storage[J]. Food Chemistry,2019,295:475−483. doi: 10.1016/j.foodchem.2019.05.151
|
[29] |
HAN Z, ZENG X A, ZHANG B S, et al. Effects of pulsed electric fields (PEF) treatment on the properties of corn starch[J]. Journal of Food Engineering,2009,93(3):318−323. doi: 10.1016/j.jfoodeng.2009.01.040
|
[30] |
ABDORREZA M N, ROBAL M, CHENG L H, et al. Physicochemical, thermal, and rheological properties of acid-hydrolyzed sago (Metroxylon sagu) starch[J]. LWT-Food Science & Technology,2012,46(1):135−141.
|
[31] |
HAN Z, ZENG X A, YU S J, et al. Effects of pulsed electric fields (PEF) treatment on physicochemical properties of potato starch[J]. Innovative Food Science & Emerging Technologies,2009,10(4):481−485.
|
[32] |
WU J, LI K, PAN X, et al. Preparation and physical properties of porous starch/natural rubber composites[J]. Starch-Stárke,2018,70(11-12):1700296.
|
[33] |
STEPHEN A M, PHILLIPS G O. Food polysaccharides and their applications[M]. 2nd ed. CRC Press, 2016.
|
1. |
陈金足,韦晓雯,农晶晶,韩丽芳,冯学,唐婷范,李利军,程昊. 氢氧化镁-活性炭复合材料的制备及其对糖浆脱色工艺优化. 食品工业科技. 2025(01): 201-207 .
![]() | |
2. |
郑婷婷,吕建彪,龚婉莹,王礼中,张文杰,严亮. 白及叶多糖脱色脱蛋白质方法及其抗氧化活性研究. 粮食与油脂. 2024(03): 86-90+105 .
![]() | |
3. |
杨紫焰,李自霖,张翠香,黄丽金,陈贵元,李雪英. 响应面法优选穿心莲多糖大孔树脂脱色工艺及其抗氧化活性研究. 安徽农学通报. 2024(10): 89-95 .
![]() | |
4. |
潘金涛,沈晓岩,陈亮,武小芬,齐慧,刘安,魏东宁,邓明. 油茶壳低聚木糖水热处理液脱色条件优化. 湖南农业科学. 2024(11): 76-80+95 .
![]() | |
5. |
赵玉荣,许金玉,侯宪邦,陆姗姗. 酶解法提取夏枯草中多糖的工艺研究. 药品评价. 2024(08): 946-950 .
![]() | |
6. |
郑艳宇,王平,刘思冶,郝明洋,赵思远,薛晓丽. 黄精多糖的树脂法脱色. 吉林化工学院学报. 2024(09): 41-46 .
![]() | |
7. |
黄丽金,李自霖,陈贵元. 响应面法优化苦胆草多糖脱色工艺. 安徽农学通报. 2023(09): 157-160+170 .
![]() | |
8. |
黄丽金,陈贵元. 苦胆草多糖活性炭脱色工艺研究. 安徽农学通报. 2023(13): 32-36 .
![]() | |
9. |
李自霖,陈贵元. 中药多糖提取物脱色工艺研究进展. 安徽农学通报. 2023(13): 37-40 .
![]() |