SUN Chensong, CHEN Wenqi, CHEN Yingying, et al. Virtual Screening of ACE Inhibitory Tripeptides Containing Tyrosine Residues Based on Molecular Docking[J]. Science and Technology of Food Industry, 2021, 42(16): 20−27. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030111.
Citation: SUN Chensong, CHEN Wenqi, CHEN Yingying, et al. Virtual Screening of ACE Inhibitory Tripeptides Containing Tyrosine Residues Based on Molecular Docking[J]. Science and Technology of Food Industry, 2021, 42(16): 20−27. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030111.

Virtual Screening of ACE Inhibitory Tripeptides Containing Tyrosine Residues Based on Molecular Docking

More Information
  • Received Date: March 09, 2021
  • Available Online: June 09, 2021
  • In order to obtain ACE inhibitory tripeptides containing tyrosine residues, the online Novopro database was used to construct tripeptides with tyrosine at the C-terminus for virtual screening to obtain tripeptides with selective inhibition of ACE-C domains, and predict their biological activity, water solubility, gastrointestinal absorbability, metabolism, and toxicity and other properties. The four ACE inhibitor peptides with high affinity to angiotensin-converting enzyme (ACE) were calculated by molecular docking, and the in vitro ACE inhibitory activity was determined to explore the relationship between binding sites and effects. The results showed that the four selected tripeptides RWY, FRY, YRY, and RFY had significant ACE inhibitory activity, with IC50 values of 228.67, 113.10, 272.61, and 101.00 μmol/L, respectively. The virtual results of molecular docking showed that RWY, FRY, YRY, and RFY all had high affinity with S1' pocket and produce hydrogen bond interactions. Among them, RFY combined with S1' pocket to produce two hydrogen bonds had the best inhibitory effect. This article used bioinformatics principles to screen tyrosine tripeptides selectively inhibited by the ACE-C domain, providing new possibilities for high-speed screening of ACE inhibitor peptides.
  • [1]
    张靖, 苏琳, 要铎, 等. 肉源血管紧张素转化酶抑制肽研究进展[J]. 食品科技,2020,45(10):241−247.
    [2]
    Yu F, Zhang Z, Luo L, et al. Identification and molecular docking study of a novel angiotensin-i converting enzyme inhibitory peptide derived from enzymatic hydrolysates of cyclina sinensis[J]. Marine Drugs,2018,16(11):411. doi: 10.3390/md16110411
    [3]
    Kaiser S, Martin M, Lunow D, et al. Tryptophan-containing dipeptides are bioavailable and inhibit plasma human angiotensin-converting enzyme in vivo[J]. International Dairy Journal,2016,52:107−114. doi: 10.1016/j.idairyj.2015.09.004
    [4]
    庞广昌, 陈庆森, 胡志和, 等. 蛋白质的消化吸收及其功能评述[J]. 食品科学,2013,34(9):375−391. doi: 10.7506/spkx1002-6630-201309074
    [5]
    Bernstein K E, Shen X Z, Gonzalez-Villalobos R A, et al. Different in vivo functions of the two catalytic domains of angiotensin-converting enzyme (ACE)[J]. Current Opinion in Pharmacology,2011,11(2):105−111. doi: 10.1016/j.coph.2010.11.001
    [6]
    Regulska K, Stanisz B, Regulski M, et al. How to design a potent, specific, and stable angiotensin-converting enzyme inhibitor[J]. Drug Discovery Today,2014,19(11):1731−1743. doi: 10.1016/j.drudis.2014.06.026
    [7]
    Bernstein K E, Ong F S, Blackwell W B, et al. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme[J]. Pharmacological Reviews,2013,65(1):1−46. doi: 10.1124/pr.112.006809
    [8]
    Wu J, Aluko R E, Nakai S. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship modeling of peptides containing 4-10 amino acid residues[J]. QSAR & Combinatorial Science,2006,25(10):873−880.
    [9]
    张钦. 含酪氨酸寡肽对血管紧张素转化酶(ACE)的结构域选择性抑制作用研究[D]. 大连: 大连工业大学, 2018.
    [10]
    孔子艺, 王鹏, 朱军生, 等. 利用mtCOI PCR-RFLP技术鉴别草地贪夜蛾与其他3种形态相近昆虫[J]. 生物安全学报,2020,29(1):16−22. doi: 10.3969/j.issn.2095-1787.2020.01.003
    [11]
    曲晓虹, 纪玮佳, 王卓亚, 等. 基于结构的小分子对接软件的评估与应用研究[J]. 中国海洋药物,2018,37(4):23−30.
    [12]
    Natesh R, Schwager S L, Sturrock E D, et al. Crystal structure of the human angiotensin-converting enzyme−lisinopril complex[J]. Nature,2003,421(6922):551−554. doi: 10.1038/nature01370
    [13]
    Dolinsky T J, Nielsen J E, Mccammon J A, et al. PDB2PQR: an automated pipeline for the setup of Poisson−Boltzmann electrostatics calculations[J]. Nucleic Acids Research,2004,32(Suppl_2):W665−W667.
    [14]
    何雪峰. 蛋白质结构虚拟现实可视化和对接程序开发[D]. 武汉: 华中农业大学, 2020.
    [15]
    黄梦楠. α-葡萄糖苷酶抑制剂的虚拟筛选和分子动力学模拟[D]. 大连: 大连理工大学, 2016.
    [16]
    Mooney C, Haslam N J, Pollastri G, et al. Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity[J]. PloS One,2012,7(10):e45012. doi: 10.1371/journal.pone.0045012
    [17]
    Cheng F, Li W, Zhou Y, et al. AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties[J]. Journal of Chemical Information and Modeling,2012,52(11):3099−3105. doi: 10.1021/ci300367a
    [18]
    Yang H, Lou C, Sun L, et al. AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties[J]. Bioinformatics,2019,35(6):1067−1069. doi: 10.1093/bioinformatics/bty707
    [19]
    Behrendt R, White P, Offer J. Advances in Fmoc solid-phase peptide synthesis[J]. Journal of Peptide Science,2016,22(1):4−27. doi: 10.1002/psc.2836
    [20]
    骆琳, 丁青芝, 马海乐. 96孔板法用于高通量血管紧张素转化酶抑制剂体外检测[J]. 分析化学,2012,40(1):129−134.
    [21]
    Wang J Y, Chen H, Wang Y Y, et al. Network pharmacological mechanisms of Vernonia anthelmintica (L.) in the treatment of vitiligo: Isorhamnetin induction of melanogenesis via up-regulation of melanin-biosynthetic genes[J]. BMC Systems Biology,2017,11(1):1−12. doi: 10.1186/s12918-016-0376-y
    [22]
    黄嫣嫣, 赵睿. 基于血脑屏障靶向多肽的脑神经分析化学研究进展[J]. 分析化学,2019,47(10):1629−1638.
    [23]
    黄海智, 陈健乐, 程焕, 等. Caco-2细胞模型预测活性物质吸收代谢的研究进展[J]. 中国食品学报,2015,15(1):164−172.
    [24]
    陆兔林, 苏联麟, 季德, 等. CYP450酶与中药代谢相互作用及酶活性测定的研究进展[J]. 中国中药杂志,2015,40(18):3524−3529.
    [25]
    Dider S, Ji J, Zhao Z, et al. Molecular mechanisms involved in the side effects of fatty acid amide hydrolase inhibitors: A structural phenomics approach to proteome-wide cellular off-target deconvolution and disease association[J]. NPJ Systems Biology and Applications,2016,2(1):16023. doi: 10.1038/npjsba.2016.23
    [26]
    Lin K, Zhang L, Han X, et al. Novel angiotensin I-converting enzyme inhibitory peptides from protease hydrolysates of Qula casein: Quantitative structure-activity relationship modeling and molecular docking study[J]. Journal of Functional Foods,2017,32:266−277. doi: 10.1016/j.jff.2017.03.008
    [27]
    Abdelhedi O, Nasri R, Mora L, et al. In silico analysis and molecular docking study of angiotensin I-converting enzyme inhibitory peptides from smooth-hound viscera protein hydrolysates fractionated by ultrafiltration[J]. Food Chemistry,2018,239:453−463. doi: 10.1016/j.foodchem.2017.06.112
    [28]
    Yu Z, Chen Y, Zhao W, et al. Identification and molecular docking study of novel angiotensin-converting enzyme inhibitory peptides from Salmo salar using in silico methods[J]. Journal of the Science of Food and Agriculture,2018,98(10):3907−3914. doi: 10.1002/jsfa.8908
    [29]
    Xie J, Chen X, Wu J, et al. Antihypertensive effects, molecular docking study, and isothermal titration calorimetry assay of angiotensin I-converting enzyme inhibitory peptides from chlorella vulgaris[J]. Journal of Agricultural and Food Chemistry,2018,66(6):1359−1368. doi: 10.1021/acs.jafc.7b04294
    [30]
    于志鹏, 樊玥, 赵文竹, 等. 鸡蛋蛋白ACE抑制肽的筛选、鉴定及其作用机制[J]. 食品科学,2020,41(12):129−135. doi: 10.7506/spkx1002-6630-20190507-050
    [31]
    Yu Y, Hu J, Miyaguchi Y, et al. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin[J]. Peptides,2006,27(11):2950−2956. doi: 10.1016/j.peptides.2006.05.025
    [32]
    Miguel M, López-fandino R, Ramos M, et al. Short-term effect of egg-white hydrolysate products on the arterial blood pressure of hypertensive rats[J]. British Journal of Nutrition,2005,94(5):731−737. doi: 10.1079/BJN20051570
    [33]
    Tsai J, Lin T C, Chen J L, et al. The inhibitory effects of freshwater clam (Corbicula fluminea Muller) muscle protein hydrolysates on angiotensin I converting enzyme[J]. Process Biochemistry,2006,41(11):2276−2281. doi: 10.1016/j.procbio.2006.05.023
    [34]
    Panyayai T, Sangsawad P, Pacharawongsakda E, et al. The potential peptides against angiotensin-I converting enzyme through a virtual tripeptide-constructing library[J]. Computational Biology and Chemistry,2018,77:207−213. doi: 10.1016/j.compbiolchem.2018.10.001
  • Cited by

    Periodical cited type(3)

    1. 周法婷,李迪,李开凤,蒋忠桂,魏蝶,丛之慧,陈井生,顾欣,肖国生. 基于网络药理学及分子对接探讨猪胶原血管紧张素转换酶抑制肽的降压机制. 食品与发酵工业. 2024(18): 217-224 .
    2. 江文婷,陈旭,蔡茜茜,杨傅佳,黄丹,黄建联,汪少芸. 基于分子对接技术研究鱼源抗冻多肽与鱼肌球蛋白的相互作用. 食品工业科技. 2022(20): 29-38 . 本站查看
    3. 陈姣,肖静,陈林,刘隆臻. 基于新型冠状病毒3CL~(pro)结构的小肽抑制剂虚拟筛选. 江苏海洋大学学报(自然科学版). 2021(03): 69-75 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (365) PDF downloads (63) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return