TANG Rui, LIN Junfang, GUO Liqiong, et al. Optimization of Fermentation Medium Formula and Fermentation Conditions of Tremella fuciformis Spore Polysaccharide and Its Scale-up Fermentation Experiment[J]. Science and Technology of Food Industry, 2021, 42(20): 173−182. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030083.
Citation: TANG Rui, LIN Junfang, GUO Liqiong, et al. Optimization of Fermentation Medium Formula and Fermentation Conditions of Tremella fuciformis Spore Polysaccharide and Its Scale-up Fermentation Experiment[J]. Science and Technology of Food Industry, 2021, 42(20): 173−182. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030083.

Optimization of Fermentation Medium Formula and Fermentation Conditions of Tremella fuciformis Spore Polysaccharide and Its Scale-up Fermentation Experiment

More Information
  • Received Date: March 08, 2021
  • Available Online: August 11, 2021
  • In order to develop a submerged fermentation medium for high-yield extracellular polysaccharides (EPS) of Tremella fuciformis spore, to improve its fermentation yield and achieve large-scale production applications, this study used a single factor method to explore the effects of different sources of carbon and nitrogen sources and nutrient elements on the yield of Tremella polysaccharides. Through the Plackett-Burman and Box-Behnken response surface design to obtain the high-yield EPS fermentation medium and fermentation conditions, and verified the optimization results in a 50 L fermentation tank. The results showed that the fermentation medium of Tremella spores with high production of extracellular polysaccharides was: Glucose 35 g/L, NaCl 0.6 g/L, compound nitrogen source (yeast extracts:corn steep dry powder=1:1) 3.6 g/L, MgSO4 0.5 g/L, KH2PO4 1 g/L; Optimal fermentation conditions were: 27 ℃, pH5, fermentation for 6 days, inoculation amount 3%(v/v) and shaker speed 150 r/min. After optimization, the yield of extracellular polysaccharide from Tremella spore was 214.45 mg/100 mL, with 8.56 times of that before optimization. In the 50 L fermentation tank, the polysaccharide yield was 258.78 mg/100 mL with 21.03% higher than the shake flask experiment. This optimization of the fermentation process significantly promoted the production of extracellular polysaccharides from Tremella spore, which would provide a theoretical support for its large-scale industrial production.
  • [1]
    刘娟, 马爱民, 盛桂华, 等. 银耳二型态细胞差异性的初步研究[J]. 微生物学通报,2007,34(5):880−884. [Liu J, Ma A M, Sheng G H, et al. Preliminary study on the differences of dimorphic cells in Tremella fuciform[J]. Microbiology China,2007,34(5):880−884. doi: 10.3969/j.issn.0253-2654.2007.05.013
    [2]
    Yang D D, Liu Yong, Zhang L J, et al. Tremella polysaccharide: The molecular mechanisms of its drug action[J]. Progress in Molecular Biology and Translational Science,2019,163:383−421.
    [3]
    Xu X Q, Chen A J, Ge X Y, et al. Chain conformation and physicochemical properties of polysaccharide (glucuronoxylomannan) from fruit bodies of Tremella fuciformis[J]. Carbohydrate Polymers,2020,245(2020):116−354.
    [4]
    Mo L, Ma F M, Li R, et al. Degradation of Tremella fuciformis polysaccharide by a combined ultrasound and hydrogen peroxide treatment: Process parameters, structural characteristics, and antioxidant activities[J]. International Journal of Biological Macromolecules,2020,160:979−990. doi: 10.1016/j.ijbiomac.2020.05.216
    [5]
    Wu Y J, Wei Z X, Zhang F M, et al. Structure, bioactivities and applications of the polysaccharides from Tremella fuciformis mushroom: A review[J]. International Journal of Biological Macromolecules,2019,121:1005−1010. doi: 10.1016/j.ijbiomac.2018.10.117
    [6]
    Zheng Q W, He B L, Wang J Y, et al. Structural analysis and antioxidant activity of extracellular polysaccharides extracted from culinary-medicinal white jelly mushroom Tremella fuciformis (Tremellomycetes) conidium cells[J]. International Journal of Medicinal Mushrooms,2020,22(5):489−500. doi: 10.1615/IntJMedMushrooms.2020034764
    [7]
    Zhu H Y, Yuan Y, Liu J, et al. Comparing the sugar profiles and primary structures of alkali-extracted water-soluble polysaccharides in cell wall between the yeast and mycelial phases from Tremella fuciformis[J]. Journal of Microbiology,2016,54(5):382−386.
    [8]
    Chen B. Optimization of extraction of Tremella fuciformis polysaccharides and its antioxidant and antitumour activities in vitro[J]. Carbohydrate Polymers,2010,81(2):420−424. doi: 10.1016/j.carbpol.2010.02.039
    [9]
    徐文清. 银耳孢子多糖结构表征、生物活性及抗肿瘤作用机制研究[D]. 天津: 天津大学, 2006.

    Xu W Q. Study on the Structure feature, biological activity and anti-tumor mechanism of polysaccharide from spores of Tremella fuciformis Berk[D]. Tianjing: Tianjing University, 2006.
    [10]
    Pan L, Zhou J, Sun T, et al. Comparison of structural, antioxidant and immuno-stimulating activities of polysaccharides from Tremella fuciformis in two different regions of China[J]. International Journal of Food Science and Technology,2018,53(8):1942−1953. doi: 10.1111/ijfs.13782
    [11]
    王久莹. 银耳芽孢多糖的结构表征、生物活性研究及产品开发[D]. 广州: 华南农业大学, 2018.

    Wang J Y. The structure feature, biological activity and product development of polysaccharide from blasto spores of Tremella fuciformis[D]. Guangzhou: South China Agricultural University, 2018.
    [12]
    Cheng H, Hou W, Lu M, et al. Interactions of lipid metabolism and intestinal physiology with Tremella fuciformis berk edible mushroom in rats fed a high-cholesterol diet with or without nebacitin[J]. Journal of Agricultural and Food Chemistry,2002,50(25):7438−7443. doi: 10.1021/jf020648q
    [13]
    申建和, 陈琼华. 木耳多糖、银耳多糖和银耳孢子多糖的降血脂作用[J]. 中国药科大学学报,1989,20(6):344−347. [Shen J H, Chen Q H. Antilipemic effect of polysaccharides from Auricularia auricula, Tremella fuciformis and Tremella fuciformis spores[J]. Journal of China Pharmaccutical University,1989,20(6):344−347. doi: 10.3321/j.issn:1000-5048.1989.06.006
    [14]
    夏尔宁, 陈琼华. 黑木耳、银耳和银耳孢子多糖生物活性的比较[J]. 南京药学院学报,1984,15(3):50−53. [Xia E N, Chen Q H. Comparison of biological activities of three polysaccharides[J]. Journal of Nanjing College of Pharmacy,1984,15(3):50−53.
    [15]
    陈依军, 夏尔宁, 王淑如, 等. 黑木耳、银耳及银耳孢子多糖延缓衰老作用[J]. 现代应用药学,1989,6(2):9−10. [Chen Y J, Xia E N, Wang S R, et al. Effect of polysaccharides from Auricularia auricula underw, Tremella fuciformis Berk and spores of Tremella fuciformis Berk on ageing[J]. Chinese Journal of Modern Applied Pharmacy,1989,6(2):9−10.
    [16]
    高磊, 张帆, 王毅飞, 等. 银耳多糖研究进展[J]. 安徽农业科学,2020,48(24):13−16, 9. [Gao L, Zhang F, Wang Y F, et al. Research advances of Tremella fuciformis polysaccharides[J]. Journal of Anhui Agricultural Sciences,2020,48(24):13−16, 9. doi: 10.3969/j.issn.0517-6611.2020.24.004
    [17]
    蔡丹凤, 蔡志欣, 郑朋武. 银耳工厂化栽培关键技术研究[J]. 中国食用菌,2017,36(3):37−39. [Cai D F, Cai Z X, Zheng P W. Research on key technologies of factory cultivation of Tremella fuciformis[J]. Edible Fungi of China,2017,36(3):37−39.
    [18]
    Zhang L J, Wang M S. Polyethylene glycol-based ultrasound-assisted extraction and ultrafiltration separation of polysaccharides from Tremella fuciformis (snow fungus)[J]. Food and Bioproducts Processing,2016,100:464−468. doi: 10.1016/j.fbp.2016.09.007
    [19]
    吴琼, 郑成, 宁正祥, 等. 碱溶性银耳粗多糖的提取及其清除自由基作用的研究[J]. 食品科学,2007,28(6):153−155. [Wu Q, Zheng C, Ning Z X, et al. Study on extraction and antioxidant effects of crude alkai-soluble Tremella polysaccharide[J]. Food Science,2007,28(6):153−155. doi: 10.3321/j.issn:1002-6630.2007.06.033
    [20]
    Zhu H, Wang T W, Sun S J, et al. Chromosomal integration of the Vitreoscilla hemoglobin gene and its physiological actions in Tremella fuciformis[J]. Applied Microbiology & Biotechnology,2006,72:770−776.
    [21]
    阮玲云, 苏达龙, 单书凯, 等. 不同条件对银耳芽孢及其多糖产量影响[J]. 中国食用菌,2015(3):47−50. [Ruan L Y, Su D L, Shan S K, et al. Effects of different conditions on the yeild of polysaccharides and spores from Tremella fuciformis[J]. Edible Fungi of China,2015(3):47−50.
    [22]
    Ma X, Yang M, He Y, et al. Plackett–Burman combined with Box-Behnken to optimize the medium of fermented Tremella polysaccharide and compare the characteristics before and after optimization[J]. Journal of Food Quality,2020:1−14.
    [23]
    Zhu H, Sun S J, et al. Effect of constant glucose feeding on the productionof exopolysaccharides by Tremella fuciformis spores[J]. Appl Biochem Biotechnol,2009,152:366−371. doi: 10.1007/s12010-008-8236-x
    [24]
    Zhu H, Cao C X, Zhang S S, et al. pH-control modes in a 5-L stirred-tank bioreactor for cell biomass and exopolysaccharide production by Tremella fuciformis spore[J]. Bioresource Technology,2011,102:9175−9178. doi: 10.1016/j.biortech.2011.06.086
    [25]
    中华人民共和国农业部. NY/T 1676—2008食用菌中粗多糖含量的测定[S]. 北京: 中国农业出版社, 2008.

    Ministry of Agriculture of the People’s Republic of China. NY/T 166–2008 determination of crude polysaccharides in edible fungi[s]. Beijing: China Agriculture Press, 2008.
    [26]
    汤勇, 丁鸿皓, 蔡俊. 黑曲霉发酵产木糖苷酶工艺优化[J]. 食品科学,2020,41(10):172−179. [Tang Y, Ding H H, Cai J. Optimization of fermentation conditions for xylosidase production by Aspergillus niger[J]. Food Science,2020,41(10):172−179. doi: 10.7506/spkx1002-6630-20190314-184
    [27]
    翟双星, 冯杰, 唐庆九, 等. 复合有机氮源对灵芝三萜液态深层发酵的影响[J]. 菌物学报,2018,37(12):1761−1770. [Zhai S X, Feng J, Tang Q J, et al. Effects of complex organic nitrogen source on triterpene production by Ganoderma lingzhi based on liquid submerged fermentation[J]. Mycosystema,2018,37(12):1761−1770.
    [28]
    葛红梅, 周旭萍, 夏令, 等. 光强和氮源对念珠藻胞外多糖分泌的影响[J]. 水生生物学报,2014,38(3):480−486. [Ge H M, Zhou X P, Xia L, et al. Effects of light and nitrogen source on the secretion of extracellular polysaccharides from Nostoc sp doi: 10.7541/2014.68

    J]. Acta Hydrobiologica Sinica,2014,38(3):480−486. doi: 10.7541/2014.68
    [29]
    冯杰, 冯娜, 刘艳芳, 等. 面向规模化应用的竹荪多糖液态深层发酵工艺优化[J]. 食品科学,2020,41(2):181−187. [Feng J, Feng N, Liu Y F, et al. Optimization of medium components for large-scale production of intracellular polysaccharides from Dictyophora indusiata in submerged fermentation[J]. Food Science,2020,41(2):181−187. doi: 10.7506/spkx1002-6630-20181101-014
    [30]
    张爱梅, 于杰, 韩雪英, 等. 高产胞外多糖沙棘根瘤内生细菌的筛选、鉴定及其发酵条件优化[J]. 食品工业科技,2019,40(19):81−88, 93. [Zhang A M, Yu J, Han X Y, et al. Screening, identification and optimization of fermentation condition of an endophytic bacteria from Seabuckthorn nodules with high-yield exopolysaccharide[J]. Science and Techology of Food Industry,2019,40(19):81−88, 93.
    [31]
    陈东兴. 银耳遗传转化受体菌株筛选及其发酵条件研究[D]. 福州: 福建农林大学, 2009.

    Chen D X. The selection of acceptor strain for Tremella fuciformis heredity transformation and research on fermentaton condition[D]. Fuzhou: Fujian Agriculture and Forestry University.
    [32]
    游萍, 张以忠, 聂忠平, 等. 3种无机盐对念珠藻生长和胞外多糖分泌的影响[J]. 贵州农业科学,2011,39(2):57−60. [You P, Zhang Y Z, Nie Z P, et al. Effect of three inorganic salts on Nostoc commune growth and exopolysacchride (EPS) secretion[J]. Guizhou Agricultural Sciences,2011,39(2):57−60. doi: 10.3969/j.issn.1001-3601.2011.02.019
    [33]
    郑晓雅, 殷伟伟, 张松, 等. 不同发酵条件对柱状田头菇菌丝产胞外多糖的影响[J]. 广东农业科学,2019,46(5):25−32. [Zheng X Y, Yin W W, Zhang S, et al. Effects of different fermentation conditions on extracellular polysaccharides produced by mycelia of Agrocybe aegerita[J]. Guangong Agricultural Sciences,2019,46(5):25−32.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (330) PDF downloads (37) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return