LI Ruizhi, LI Shi, CHEN Ge, et al. Effect of Microwave Heat Treatment on Whole Potato Flour and Digestive Properties of Potato Bread [J]. Science and Technology of Food Industry, 2021, 42(12): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030071.
Citation: LI Ruizhi, LI Shi, CHEN Ge, et al. Effect of Microwave Heat Treatment on Whole Potato Flour and Digestive Properties of Potato Bread [J]. Science and Technology of Food Industry, 2021, 42(12): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030071.

Effect of Microwave Heat Treatment on Whole Potato Flour and Digestive Properties of Potato Bread

More Information
  • Received Date: March 07, 2021
  • Available Online: April 18, 2021
  • Microwave heat treatment was used to improve the potato powder, and the change rules of lipase, water holding capacity, insoluble dietary fiber and powder properties were determined. Potato bread was made from improved potato flour and high gluten flour in the ratio of 3:7. The effects of different microwave power on the structural and starch digestibility of potato bread were studied. The results showed that the characteristics of the whole potato powder were improved after microwave heat treatment. With the increase of microwave power, the lipase residual activity decreased to 1.23%, the water retention increased to 5.71 g/g, and the insoluble dietary fiber content decreased by 21.35%. Compared with the potato bread made from potato flour without microwave heat treatment, the nutrition and digestion characteristics of the improved potato bread were significantly improved. When the microwave power was 750 W, all the indexes of the bread were the best, and the specific volume was increased to 4.04 mL/g, hardness decreased to 115.50 g, elasticity increased to 9.17 mm, resistant starch increased to 43.60%, HIWB750 and PGIWB750 decreased by 67.29% and 46.34, respectively. The anti-aging ability and sensory quality of potato bread were improved.
  • [1]
    杨庆余, 王妍文, 李芮芷, 等. 马铃薯食品研究进展[J/OL]. 食品工业科技: 1−16[2021-01-15]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200929.1331.002.html.
    [2]
    杨雅伦. 主粮化背景下的马铃薯比较效益研究[D]. 北京: 中国农业科学院, 2017.
    [3]
    徐芬. 马铃薯全粉及其主要组分对面条品质影响机理研究[D]. 北京: 中国农业科学院, 2016.
    [4]
    许芳溢, 李五霞, 吕曼曼, 等. 苦荞馒头抗氧化品质、体外消化特性及感官评价的研究[J]. 食品科学,2014,35(11):42−47. doi: 10.7506/spkx1002-6630-201411009
    [5]
    李铁梅. 马铃薯减肥代餐粉研究及消化特性评价[D]. 邯郸: 河北工程大学, 2020.
    [6]
    徐忠, 王胜男, 赵丹, 等. 马铃薯全粉制备、性质和主食化加工研究进展[J]. 食品工业科技,2017,38(19):322−326.
    [7]
    刘远晓, 李萌萌, 卞科, 等. 热处理在小麦储藏与加工中的应用研究进展[J]. 食品科学,2019,40(13):326−333. doi: 10.7506/spkx1002-6630-20180623-444
    [8]
    赵晶, 郝金伟, 时东杰, 等. 马铃薯全粉面包加工工艺的研究[J]. 中国食品添加剂,2019,30(1):126−134. doi: 10.3969/j.issn.1006-2513.2019.01.012
    [9]
    肖志刚, 刘璐, 王丽爽, 等. 小麦麸皮的品质改良及含麸皮面包焙烤品质的研究[J]. 现代食品科技,2019,35(11):66−75.
    [10]
    刘瑞, 陶乐仁, 万康. 微波处理对'新大坪'马铃薯贮藏品质的影响[J]. 食品与发酵工业,2021,47(5):168−173.
    [11]
    袁璐, 胡婕伦, 殷军艺. 微波辐射对淀粉结构特性的影响及其在淀粉类食品加工中应用的研究进展[J]. 食品工业科技,2020,41(18):330−337, 343.
    [12]
    刘敏. 不同方法制备的马铃薯抗性淀粉结构与性质的研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
    [13]
    张芯蕊. 微波焙烤对藜麦功能特性及其应用的影响研究[D]. 咸阳: 西北农林科技大学, 2018.
    [14]
    王常青. 马铃薯颗粒全粉的微波干燥工艺的研究[J]. 食品科学,2005(7):133−136. doi: 10.3321/j.issn:1002-6630.2005.07.029
    [15]
    Dupuis J H, Lu Z, Yada R Y, et al. The effect of thermal processing and storage on the physicochemical properties and invitro digestibility of potatoes[J]. International Journal of Food Science & Technology,2016,51(10):2233−2241.
    [16]
    李周勇, 韩育梅, 夏德冬. 马铃薯抗性淀粉的微波预处理条件及性质研究[J]. 食品研究与开发,2014,35(2):1−6. doi: 10.3969/j.issn.1005-6521.2014.02.001
    [17]
    罗登林, 赵影, 徐宝成, 等. 天然菊粉对面团发酵流变学和面包品质的影响[J]. 食品科学,2018,39(6):26−31. doi: 10.7506/spkx1002-6630-201806005
    [18]
    Nawrocka A, Szymanska-Chargot M, Mis A, et al. Aggregation of gluten proteins in model dough after fibre polysaccharide addition[J]. Food Chemistry,2017,231:51−60. doi: 10.1016/j.foodchem.2017.03.117
    [19]
    杨庆余, 罗志刚, 肖志刚, 等. 低温挤压法制备玉米淀粉-GMS复合物及其回生性质研究[J]. 现代食品科技,2017,33(1):132−138, 158.
    [20]
    张焕新. 抗性淀粉酶法制备及其特性与应用的研究[D]. 无锡: 江南大学, 2012.
    [21]
    Englyst K N, Englyst H N, Hudson G J, et al. Rapidly available glucose in foods: Anin vitro measurement that reflects the glycemic response[J]. American Journal of Clinical Nutrition,1999,69(3):448−454. doi: 10.1093/ajcn/69.3.448
    [22]
    王玉娟, 李晓磊, 付婧超, 等. 普鲁兰酶水解制备抗消化性和低回生性木薯淀粉的研究[J]. 粮食与油脂,2017,30(12):46−49. doi: 10.3969/j.issn.1008-9578.2017.12.013
    [23]
    Brennan C S, Tudorica C M. Evaluation of potential mechanisms by which dietary fibre additions reduce the predicted glycaemicindex of fresh pastas[J]. International Journal of Food Science & Technology,2008,43(12):2151−2162.
    [24]
    A V V, Eliana Granados-Pérez a, A A A, et al. Fibre concentrate from mango fruit: Characterization, associated antioxidant capacity and application as a bakery product ingredient[J]. LWT - Food Science and Technology,2007,40(4):722−729. doi: 10.1016/j.lwt.2006.02.028
    [25]
    Capriles V D, Arêas J A G. Approaches to reduce the glycemic response of gluten-free products: In vivo and in vitro studies.[J]. Food & function,2016,7(3):1266−1272.
    [26]
    田向东, 张晓斌. 微波制备改性燕麦纤维粉的生产方法: 中国, CN200610102266.2[P]. 2007-06-06.
    [27]
    陶春生. 高膳食纤维马铃薯面条的品质影响机理及机械化加工的研究[D]. 北京: 北京化工大学, 2020.
    [28]
    刘锐. 和面方式对面团理化结构和面条质量的影响[D]. 北京: 中国农业科学院, 2015.
    [29]
    胡蕾琪, 郭长凯, 潘志海, 等. 微波场对食品的非热效应研究进展[J]. 食品与发酵工业,2020,46(16):270−275.
    [30]
    Sabanis D, Lebesi D, Tzia C. Effect of dietary fibre enrichment on selected properties of gluten-free bread[J]. LWT-Food Science and Technology,2009,42(8):1380−1389. doi: 10.1016/j.lwt.2009.03.010
    [31]
    罗志刚, 徐小娟, 陈永志. 微波对马铃薯淀粉螺旋结构及消化性的影响[J]. 华南理工大学学报(自然科学版),2017,45(12):1−7.
    [32]
    周玉瑾. 麦麸可溶性与不溶性膳食纤维对面条品质的影响[D]. 郑州: 河南农业大学, 2015.
    [33]
    Alan M, Balazs B, Neil R. Roles for dietary fibre in the upper GI tract: The importance of viscosity[J]. Food Research International,2016,88:234−238. doi: 10.1016/j.foodres.2015.11.011
    [34]
    Ou S, Kwok K C, Li Y, et al. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose[J]. Journal of Agricultural & Food Chemistry,2001,49(2):1026−1029.
    [35]
    蔡攀福, 李冰, 梁毅, 等. 魔芋葡甘聚糖对面条品质及其淀粉体外消化的影响[J]. 食品科学,2018,39(5):8−13. doi: 10.7506/spkx1002-6630-201805002
    [36]
    Zhang J, Wang Z W, Shi X M. Effect of microwave heat/moisture treatment on physicochemical properties of Canna edulis Ker starch[J]. Journal of the Science of Food & Agriculture,2009,89(4):653−664.
  • Cited by

    Periodical cited type(11)

    1. 裘一婧,贾彦博,江海,孙岚,陈美春,陈丽芳,余菁,林舒忆. UPLC-MS/MS测定凉果类酵素食品中的致泻类非法添加物. 发酵科技通讯. 2024(01): 1-7 .
    2. 赵一萌,索晓雄,刘彩霞,尚彩玲,杜晨晖,闫艳,裴香萍. 药用植物蛋白提取方法及生物活性研究进展. 食品安全质量检测学报. 2024(15): 119-126 .
    3. 丘梓慧,陈梓雅,陈爽,王琴,肖更生,彭进明. 超微粉碎果蔬粉的活性成分、物理特性与食品开发研究进展. 现代食品科技. 2024(11): 398-409 .
    4. 周勤文. 酸枣仁蛋白的提取工艺优化分析. 中国食品工业. 2023(02): 95-97+46 .
    5. 孟楠,秦令祥,曹源,高愿军. 超微冷冻前处理协同渗漉法提取食叶草黄酮工艺优化及其抗氧化、降血糖活性研究. 食品安全质量检测学报. 2023(13): 249-257 .
    6. 谭力铭,曹妍,裴海生,郝建雄,李慧颖. 酶法制备酸枣仁ACE抑制肽理化性质研究. 食品工业科技. 2022(02): 84-92 . 本站查看
    7. 任晓婵,常婧瑶,马晓丽,孔保华,辛莹,胡公社,刘骞. 超微粉碎后粒径对大麦全粉品质特性的影响. 食品工业科技. 2022(10): 80-86 . 本站查看
    8. 赵学旭,武蕊,衣春敏,武安琪,马培轩,单良. 沙棘果渣粉的超微冷冻粉碎制备及其理化性质与结构特性. 现代食品科技. 2022(05): 87-95 .
    9. 易佳,刘昆仑. 超微联合超声波优化提取米糠蛋白及其对米糠蛋白溶解性的影响. 食品研究与开发. 2022(19): 117-123 .
    10. 王士佳,张璐,葛善赢,李佳宸,吴学智,张佰清. 两种粉碎机型式对鹰嘴豆芽超微粉食用品质的影响. 食品安全质量检测学报. 2022(20): 6699-6705 .
    11. 刘晖,李光哲,肖凤琴,杨亦柳,韩荣欣,张红印,严铭铭. 酸枣仁蛋白的分离纯化及体外免疫活性. 食品科技. 2022(12): 214-220 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (368) PDF downloads (71) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return