ZHU Mingrui, YU Chenchen, XU Yanli, et al. Altay Sheep (Ovis aries L.) Buttock Fat and Its Fractionation Products on Short-chain Fatty Acids in Mouse Colon Morphology and Cecal Contents[J]. Science and Technology of Food Industry, 2021, 42(20): 365−371. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020224.
Citation: ZHU Mingrui, YU Chenchen, XU Yanli, et al. Altay Sheep (Ovis aries L.) Buttock Fat and Its Fractionation Products on Short-chain Fatty Acids in Mouse Colon Morphology and Cecal Contents[J]. Science and Technology of Food Industry, 2021, 42(20): 365−371. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020224.

Altay Sheep (Ovis aries L.) Buttock Fat and Its Fractionation Products on Short-chain Fatty Acids in Mouse Colon Morphology and Cecal Contents

More Information
  • Received Date: February 28, 2021
  • Available Online: August 15, 2021
  • To study the nutritional properties of altay sheep buttock fat and its solvent extraction fractions, 60 male mice were selected and divided randomly into 5 groups, using 2 ℃ fractionation products (2 ℃ group), 12 ℃ fractionation products (12 ℃ group), altay sheep buttock fat (BF), rapeseed oil (RO), normal saline (CK) to gavage (1.5 mL/10 g) them, killing them at day 20 and day 40, respectively and the relevant indexes were measured. The results showed that: 20 days after gavage, except for the CK group, there was no significant different in the content of acetic acid, butyric acid and valeric acid in the cecum of mice (P>0.05). The cecal propionic acid content of the BF group and the cecal isovaleric acid content of the 2 and 12 ℃ groups were significantly higher than those of the RO group (P<0.05). The length of colon villi and the depth of colonic crypts in the 12 ℃ and BF groups were significantly lower than those of the RO group (P<0.05). 40 days after the gavage, the contents of cecal propionic acid, butyric acid and valeric acid in the 2 ℃ group and the cecal acetic acid, propionic acid and butyric acid in the 12 ℃ group were significantly higher than those of the RO group (P<0.05). The colonic crypt depth and villi length in the 12 ℃ and BF groups were significantly lower than those of the RO group (P<0.05). It showed that under this intake level, altay sheep buttock fat at 2 ℃ was more conducive to maintaining the relative stability of the short-chain fatty acid content in the cecum of mice than raw fat and rapeseed oil, and had less damage to the colon.
  • [1]
    中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019: 276−278.

    National Bureau of Statistics of People’s Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2019: 276−278.
    [2]
    王金泉, 王肖燕, 叶青, 等. 阿勒泰大尾羊与小尾寒羊不同组织FTO基因的检测[J]. 动物医学进展,2013,34(12):84−88. [Wang J Q, Wang X Y, Ye Q, et al. Detection of FTO gene in different tissues of Altay big-tail sheep and small-tail Han sheep[J]. Progress in Veterinary Medicine,2013,34(12):84−88. doi: 10.3969/j.issn.1007-5038.2013.12.019
    [3]
    Li Y, Li Y B, Liu C J. Changes in lipid oxidation and fatty acids in altay sheep fat during a long time of low temperature storage[J]. J Oleo Sci,2017,66(4):321−327. doi: 10.5650/jos.ess16139
    [4]
    李涛, 陈卫林, 王子荣, 等. 哈萨克羊不同部位脂肪特性的研究[J]. 中国油脂,2018,43(7):32−35, 40. [Li T, Cheng W L, Wang Z R, et al. Fat characteristics in different parts of Kazak sheep[J]. China Oils and Fats,2018,43(7):32−35, 40. doi: 10.3969/j.issn.1003-7969.2018.07.009
    [5]
    刘丹, 何鑫, 王子荣, 等. 不同品种脂臀羊尾脂品质的比较分析[J]. 现代食品科技,2018,43(7):32−35, 40. [Liu D, He X, Wang Z R, et al. Comparative analysis of the quality of different varieties of fat buttocks[J]. Modern Food Science and Technology,2018,43(7):32−35, 40.
    [6]
    何鑫, 刘丹, 李涛, 等. 不同提取方法对羊尾油品质的影响[J]. 肉类研究,2019,33(2):7−12. [He X, Liu D, Li T, et al. Effects of different extraction methods on the quality of sheep tail lipids[J]. Meat Research,2019,33(2):7−12. doi: 10.7506/rlyj1001-8123-20181129-222
    [7]
    程谦伟, 张谦益, 孟陆丽, 等. 大豆油脂肪酸溶剂法分提研究[J]. 粮食与油脂,2010(1):16−18. [Cheng Q W, Zhang Q Y, Meng L L, et al. Solvent extraction of fatty acids from soybean oil[J]. Food and Oil,2010(1):16−18. doi: 10.3969/j.issn.1008-9578.2010.01.005
    [8]
    张晓鹏, 孟宗, 李进伟, 等. 猪油溶剂法分提产物性质分析[J]. 中国油脂,2014,39(2):37−40. [Zhang X P, Meng Z, Li J W, et al. Property analysis of lard solvent extraction product[J]. China Oil,2014,39(2):37−40.
    [9]
    沈继红, 刘发义, 石书河, 等. 溶剂分提法去除鱼油中高凝固脂的研究[J]. 食品科技,2001,1(1):39. [Shen J H, Liu F Y, Shi S H, et al. Study on removing high solidifying fat from fish oil by solvent fractionation[J]. Food Science and Technology,2001,1(1):39. doi: 10.3969/j.issn.1005-9989.2001.01.017
    [10]
    Trompette A, Gollwitzer E S, Adava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med,2014,20(2):159−166. doi: 10.1038/nm.3444
    [11]
    Den B G, Van E K, Groen A K, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res,2013,54(9):2325−2340. doi: 10.1194/jlr.R036012
    [12]
    费嘉, 罗军涛, 章小英, 等. 短链脂肪酸在肠道菌群调节人体能量代谢中的作用[J]. 中华糖尿病杂志,2018,10(5):370−373. [Fei J, Luo J T, Zang X Y, et al. The role of short-chain fatty acids in the regulation of human energy metabolism by intestinal flora[J]. Chinese Journal of Diabetes,2018,10(5):370−373. doi: 10.3760/cma.j.issn.1674-5809.2018.05.014
    [13]
    Mathewson ND, Jenq R, Mathew AV, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease[J]. Nat Immunol,2016,17(10):505−513.
    [14]
    Serino M, Luche E, Gres S, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota[J]. Gut,2012,61(4):543−553. doi: 10.1136/gutjnl-2011-301012
    [15]
    刘宇, 丁倩雯, 冉超, 等. 鱼虾肠道菌群代谢产物短链脂肪酸研究进展[J]. 生物技术通报,2020,36(2):58−64. [Liu Y, Ding Q W, Ran C, et al. Research progress of short chain fatty acids in intestinal microflora metabolites of fish and shrimp[J]. Biotechnology Bulletin,2020,36(2):58−64.
    [16]
    Arpaia N, Campbell C, Fan X Y, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature,2013,504(7480):451. doi: 10.1038/nature12726
    [17]
    Caesar R, Tremaroli V, Cani P D, et al. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling[J]. Cell Metab,2015,22(4):658−668. doi: 10.1016/j.cmet.2015.07.026
    [18]
    Schwiertz A, Taras D, Beijer S, et al. Microbiota and SCFA in lean and overweight healthy subjects[J]. Obesity,2010,18(1):190−195. doi: 10.1038/oby.2009.167
    [19]
    Wan Y, Wang F L, Yuan J H, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: A 6-month randomised controlled-feeding trial[J]. Gut,2019,68(8):1417−1429.
    [20]
    Vinolo M A, Rodrigues H G, Nachbar R T, et al. Regulation of inflammation by short chain fatty acids[J]. Nutrients,2011,3(10):858−876. doi: 10.3390/nu3100858
    [21]
    中国居民膳食指南(2016)[M]. 北京: 人民卫生出版社, 2016: 118.

    Dietary guidelines for Chinese (2016)[M]. Beijing: People’s Medical Publishing House, 2016: 118.
    [22]
    陈和地, 任怡琳, 耿燕, 等. 基于超高效液相色谱法快速测定短链脂肪酸方法的建立[J]. 生物加工过程,2019,17(4):365−371. [Cheng H D, Ren Y L, Geng Y, et al. Analysis of short chain fatty acids by ultra-performance liquid chromatography[J]. Chinese Journal of Bioprocess Engineering,2019,17(4):365−371. doi: 10.3969/j.issn.1672-3678.2019.04.006
    [23]
    Faujan H N, Abdulamir A S, Fatimah A B, et al. The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects[J]. Open Biochem J,2010,4:53−58. doi: 10.2174/1874091X01004010053
    [24]
    赵仁山. 儿童生物样本中挥发性生化物质的检测及其应用[D]. 南京: 东南大学, 2017.

    Zhao R S. Detection and application of volatile biochemical substances in children’s biological samples[D]. Nanjing: Southeast University, 2017.
    [25]
    李慧, 杨光勇, 刘茜明, 等. 黄连解毒汤对小鼠血清中Trp、Kyn、5-HT及粪便中短链脂肪酸代谢的影响[J]. 黑龙江畜牧兽医,2019,9:126−129. [Li H, Yang G Y, Liu Q M, et al. Effect of huanglian jiedu decoction on Trp, Kyn, 5-HT in serum and short-chain fatty acid metabolism in feces of mice[J]. Heilongjiang Animal Science and Veterinary Medicine,2019,9:126−129.
    [26]
    Vogt J A, Wolever T M S. Fecal acetate is inversely related to acetate absorption from the human rectum and distal colon[J]. J Nutr, 2003, 133: 3145–3148.
    [27]
    Frost G, Sleeth M L, Arisoylu M S. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mech-anism[J]. Nat Commun, 2014, 5: 3611.
    [28]
    任燕. 短链脂肪酸在SD大鼠肥胖模型中作用探讨[A]. 中国中西医结合学会肾脏疾病专业委员会. 中国中西医结合学会肾脏疾病专业委员会2018年学术年会论文摘要汇编[C]//中国中西医结合学会肾脏疾病专业委员会: 中国中西医结合学会, 2018: 1.

    Ren Y. The role of short-chain fatty acids in SD rat obesity model[A]. Professional Committee of Renal Diseases, Chinese Society of Integrative Medicine. Abstract compilation of the 2018 academic annual meeting of the Renal Disease Professional Committee of the Chinese Society of Integrative Medicine[C]// Professional Committee of Renal Diseases, Chinese Society of Integrative Medicine: China Association of Integrative Medicine, 2018: 1.
    [29]
    Grant D, Brinkworth, Manny N, et al. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations[J]. Br J Nutrition,2009,101:1493−1502. doi: 10.1017/S0007114508094658
    [30]
    Al-Lahham S H, Peppelenbosch M P, Roelofsen H, et al. Biological effects of propionic acid in humans; metabolism, poten-tial applications and underlying mechanisms[J]. Biochim BiophysActa,2010,1:1175−1183.
    [31]
    Kotzampassi K, Giamarellos-Bourboulis E J, Stavrou G. Obesity as a consequence of gut bacteria and diet interactions[J]. ISRN Obes,2014,5:651895.
    [32]
    Hong Y H, Nishimura Y, Hishikawa D, et al. Acetate and propionate short-chain fatty acids stimulate adipogenesis via GPCR43[J]. Endocrinology,2005,146(12):5092−5099. doi: 10.1210/en.2005-0545
    [33]
    吴水芸. 高脂肥胖对肠道微生态、短链脂肪酸的影响[D]. 镇江: 江苏大学, 2016.

    Wu S Y. The effects of obesity on intestinal micro-ecology and short-chain fatty acids[D]. Zhenjiang: Jiangsu University, 2016.
    [34]
    李贺. 不同来源脂肪对大鼠肠道微生物的影响研究[D]. 南京: 南京农业大学, 2017.

    Li H. Effect of different dietary fats on gut microbiota[D]. Nanjing: Nanjing Agricultural University, 2017.
    [35]
    Susan E P, Sylvia H D, Deorgina L H, et al. The microbiology of butyrate formation in the human colon[J]. FEMS Microbiol Lett,2002,217(2):133−139. doi: 10.1111/j.1574-6968.2002.tb11467.x
    [36]
    Krautkramer K A, Kreznar J H, Romano K A, et al. Diet–mi-crobiota interactions mediate global epigenetic programming inmultiple host tissues[J]. Mol Cell,2016,64(5):982−992. doi: 10.1016/j.molcel.2016.10.025
    [37]
    Greta J, Jie X, Göran M, et al. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects[J]. PloS One,2013,8(11):e80476. doi: 10.1371/journal.pone.0080476
    [38]
    Kong C, Yuan R. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet[J]. Nutrition,2019,60:175−184. doi: 10.1016/j.nut.2018.10.002
    [39]
    Ye Z, Cao C, Li Q, et al. Different dietary lipid consumption affects the serum lipid profiles, colonic short chain fatty acid composition and the gut health of Sprague Dawley rats[J]. Food Res Int,2020,132:109117. doi: 10.1016/j.foodres.2020.109117
    [40]
    黄玉军, 姚瑶, 周帆, 等. 间歇益生菌干预对高脂血症大鼠粪便短链脂肪酸含量的影响[J]. 现代食品科技,2019,35(12):1−7. [Huang Y J, Yao Y, Zhou F, et al. Effect of intermittent intervention of probiotics on short-chain fatty acid content in feces of rats with hyperlipidemia[J]. Modern Food Science & Technology,2019,35(12):1−7.
    [41]
    Ji Y, Ma N, Zhang J, et al. Dietary intake of mixture coarse cereals prevents obesity by altering the gut microbiota in high-fat diet fed mice[J]. Food Chem Toxicol,2021,147:111901. doi: 10.1016/j.fct.2020.111901
    [42]
    Araujo J R, Tomas J, Brenner C, et al. Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity[J]. Biochimie,2017,141:97−106. doi: 10.1016/j.biochi.2017.05.019
    [43]
    卫旭彪, 张璐璐, 马广, 等. 酵母菌对猪肠道绒毛、隐窝及菌群的影响[J]. 饲料工业,2016,37(4):61−64. [Wei B X, Zhang L L, Ma G, et al. Effects of yeasts on intestinal villus, crypt and flora in pigs[J]. Feed Industry,2016,37(4):61−64.
    [44]
    叶展. 典型膳食油脂胃肠道消化吸收特性及其对肠道健康的影响研究[D]. 无锡: 江南大学, 2020.

    Ye Z. Studies on characteristics of typical dietary oil gastrointestinal digestion and absorption, and their influences on gut health[D]. Wuxi: Jiangnan University, 2020.
  • Cited by

    Periodical cited type(12)

    1. 林柳雁,王丽,萧绮莉,蒋小红,陈惠冰. 成人炎症性肠病患者经口营养管理的证据总结. 护理实践与研究. 2025(02): 244-251 .
    2. 雷露,吕沛然,张宁,梁越,赵耀,赵娴. 中医治疗炎症性肠病机制的研究进展. 中医药学报. 2024(02): 116-121 .
    3. 李振,崔艳红,刘长忠,袁梦. 枯草芽孢杆菌对环境耐受性和产中性蛋白酶能力研究. 黑龙江畜牧兽医. 2024(04): 81-87+92 .
    4. 耿英杰,戚浩龙,李园,蔡晓青. 益生菌治疗炎症性肠病的研究进展. 中国医药工业杂志. 2024(08): 1069-1077 .
    5. 李文,刘夫锋. 基于益生菌口服药物递送系统的研究进展. 微生物学报. 2024(11): 4086-4105 .
    6. 曾馨苑,吴严玮. 益生菌联合复方谷氨酰胺和马来酸曲美布汀治疗腹泻型肠易激综合征的疗效观察. 中国处方药. 2024(11): 105-107 .
    7. 乌云,浩斯,巴达玛斯仁,锡林其其格,斯琴. 蒙医大肠宝如病与炎症性肠病的相关研究进展. 中国民族医药杂志. 2023(01): 65-67 .
    8. 王秋珍,邓自腾,兰静,刘雪连,范祥伟,薛毅,马云飞. 干酪乳杆菌对DSS诱导结肠炎小鼠焦虑样行为的影响及对结肠的保护作用. 中国农业大学学报. 2023(04): 139-146 .
    9. 杨硕,唐宗馨,段勃帆,陈禹含,郭欢新,孟祥晨. 双歧杆菌及其制剂对炎症性肠病作用机制研究进展. 食品科学. 2023(05): 275-281 .
    10. 侯保秋,董怡文,刘方. 一株分离自牦牛乳中的副干酪乳杆菌ZZ102对溃疡性结肠炎的缓解作用研究. 中国乳品工业. 2023(10): 21-25 .
    11. 刘柘君,刘振权,孙文燕. 复方益生菌粉提高小鼠免疫力的实验研究. 食品与药品. 2023(05): 456-461 .
    12. 杨敏琪,张吉翔,董卫国. 益生菌治疗炎性肠病的研究进展. 疑难病杂志. 2022(11): 1202-1205 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (307) PDF downloads (11) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return