FENG Zhen, LIU Xin, ZHANG Zhen, et al. Determination of Chlorpyrifos Pesticide Residues in Wheat Based on Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(4): 271−277. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020221.
Citation: FENG Zhen, LIU Xin, ZHANG Zhen, et al. Determination of Chlorpyrifos Pesticide Residues in Wheat Based on Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(4): 271−277. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020221.

Determination of Chlorpyrifos Pesticide Residues in Wheat Based on Near Infrared Spectroscopy

More Information
  • Received Date: February 25, 2021
  • Available Online: December 17, 2021
  • The identification model of chlorpyrifos pesticide residues in wheat was established based on near infrared spectroscopy and stoichiometry. Wheat samples with different chlorpyrifos residues were prepared by spraying method. Near infrared diffuse reflectance spectra of samples were collected, and qualitative prediction models of factorization method, Euclidean distance method and quantitative prediction model of partial least squares method were established. The results showed that: The qualitative discrimination rate of factorization method was higher than that of Euclidean distance method, the characteristic bands of construction conditions were 5543.68~4643.72, 7582.43~6510.28 cm−1, the preprocessing method was second derivative+vector normalization+5-point smoothing, the discrimination rate could reach 96%. The characteristic bands of the construction conditions of partial least squares quantitative discrimination model were 5543.68~4643.72 cm−1, 7582.43~6510.28 cm−1, the preprocessing method was to eliminate the constant offset, the main component fraction was 7, the cross validation coefficient (R2) was 99.46, and the mean square residual (RMSECV) was 1.15. The correlation between the actual value and the predicted value was good, and the minimum detection limit was 1 mg/kg, which could accurately determine the pesticide of Chlorpyrifos in wheat. The above results showed that the discrimination rate of the qualitative analysis model established by the factorization method was as high as 96%, which could realize the qualitative analysis and identification of chlorpyrifos pesticide residues in wheat, and the partial least squares method could realize the quantitative analysis and identification with good reproducibility.
  • [1]
    HAN D , CAI H , YANG X, et al. Multi-source data modeling of the spatial distribution of winter wheat yield in China from 2000 to 2015[J]. Sustainability,2020,12(13):1−16.
    [2]
    吴莹晗, 马丹妮, 李华. 黑小麦营养价值 功能性物质及其影响因素的研究进展[J]. 农产品加工,2019(18):58−60. [WU Y H, MA D N, LI H. Research progress on functional substances of nutritional value and their influencing factors in rye[J]. Farm Products Processing,2019(18):58−60.
    [3]
    孙桂华, 崔天鸣, 付雪娇, 等. 特色杂粮营养成分及保健功能[J]. 杂粮作物,2005(6):399−402. [SUN G H, CUI T M, FU X J, et al. Nutrient composition and health function of characteristic coarse cereals[J]. Coarse Grain Crops,2005(6):399−402.
    [4]
    史雪岩, 王海光, 王文卓, 等. 西北春小麦和麦田土壤中15种常用农药残留的检测[J]. 植物保护,2020,46(5):53−59,76. [SHI X Y, WANG H G, WANG W Z, et al. Determination of 15 common pesticide residues in spring wheat and wheat field soil in Northwest China[J]. Plant Protection,2020,46(5):53−59,76.
    [5]
    张晓, 蒋霞, 张楠楠, 等. 基于近红外光谱的阿克苏红富士苹果毒死蜱农药残留量检测[J]. 江苏农业科学,2018,46(6):162−166. [ZHANG X, JIANG X, ZHANG N N, et al. Determination of chlorpyrifos pesticide residues in Akesu red fuji apple based on near infrared spectroscopy[J]. Jiangsu Agricultural Sciences,2018,46(6):162−166.
    [6]
    杨明, 涂凤琴, 伊鋆, 等. 蔬菜中农药残留分析检测技术的研究进展[J]. 河南工业大学学报(自然科学版),2020,41(6):119−128. [YANG M, TU F Q, YI Y, et al. Research progress of pesticide residue analysis and detection technology in vegetables[J]. Journal of Henan University of Technology (Natural Science Edition),2020,41(6):119−128.
    [7]
    施杰, 来庆华, 郭思聪, 等. 茶叶农药残留与检测技术[J]. 食品安全质量检测学报,2019,10(5):1243−1249. [SHI J, LAI Q H, GUO S C, et al. Pesticide residues in tea and detection technology[J]. Journal of Food Safety & Quality,2019,10(5):1243−1249.
    [8]
    王勇生, 李洁, 王博, 等. 基于近红外光谱技术评估高粱中粗蛋白质、水分含量的研究[J]. 动物营养学报,2020,32(3):1353−1361. [WANG Y S, LI J, WANG B, et al. Evaluation of crude protein and moisture content in sorghum based on near infrared spectroscopy[J]. Chinese Journal of Animal Nutrition,2020,32(3):1353−1361. doi: 10.3969/j.issn.1006-267x.2020.03.043
    [9]
    LI M, ZHANG X Y, JIANG Q. Qualitative identification of pesticide residues in pakchoi based on near infrared spectroscopy[J]. IOP Conference Series: Materials Science and Engineering,2018.
    [10]
    LOURDES S, ANTONIO G J, VICTOR O S, et al. Feasibility of using NIR spectroscopy to detect herbicide residues in intact olives[J]. Food Control,2013,30(2):504−509. doi: 10.1016/j.foodcont.2012.07.045
    [11]
    刘凯. 蔬菜中有机磷农药多残留的光谱特征检测分析[J]. 科技通报,2017,33(8):238−242. [LIU K. Detection and analysis of spectral characteristics of organophosphorus pesticide residues in vegetables[J]. Bulletin of Science and Technology,2017,33(8):238−242.
    [12]
    朱心勇. 应用近红外光谱技术检测叶菜类蔬菜中有机磷农药残留的含量[D]. 南昌: 江西农业大学, 2012.

    ZHU X Y. Determination of organophosphorus pesticide residues in leafy vegetables by near infrared spectroscopy[D]. Nanchang: Jiangxi Agricultural University, 2012.
    [13]
    刘丕莲. 基于近红外光谱技术的大米中毒死蜱农药残留的无损检测研究[D]. 南昌: 江西农业大学, 2014.

    LIU P L. Nondestructive detection of chlorpyrifos pesticide residues in rice based on near infrared spectroscopy[D]. Nanchang: Jiangxi Agricultural University, 2014.
    [14]
    纪炜达. 大米中农药残留的光谱快速检测方法研究[D]. 南昌: 江西农业大学, 2016.

    JI W D. Rapid determination of pesticide residues in rice by spectroscopy[D]. Nanchang: Jiangxi Agricultural University, 2016.
    [15]
    黄敏. 毒死蜱、吡虫啉及吡虫啉代谢产物在小麦上的残留分析研究[D]. 贵州: 贵州大学, 2019.

    HUANG M. Residue analysis of chlorpyrifos, imidacloprid and imidacloprid metabolites on wheat [D]. Guizhou: Guizhou University, 2019.
    [16]
    严寒, 郭平, 骆鹏杰, 等. 近红外光谱结合膜富集技术测定大米中毒死蜱农药残留[J]. 现代食品科技,2017,33(4):289−294. [YAN H, GUO P, LUO P J, et al. Determination of chlorpyrifos pesticide residues in rice by near infrared spectroscopy combined with membrane enrichment[J]. Modern Food Science and Technology,2017,33(4):289−294.
    [17]
    张晓, 蒋霞, 石鲁珍, 等. 基于GA的偏最小二乘法在近红外光谱识别苹果表面农药残留量的应用[J]. 科技通报,2019,35(8):28−33. [ZHANG X, JIANG X, SHI L Z, et al. Identification of pesticide residues on apple surface by near infrared spectroscopy using partial least squares based on GA[J]. Science and Technology Bulletin,2019,35(8):28−33.
    [18]
    李春雨, 葛啸, 金燕婷, 等. 基于近红外光谱技术的蔬菜农药残留种类检测[J]. 农业工程,2019,9(6):33−39. [LI C Y, GE X, JIN Y T, et al. Detection of pesticide residues in vegetables based on near infrared spectroscopy[J]. Agricultural Engineering,2019,9(6):33−39. doi: 10.3969/j.issn.2095-1795.2019.06.009
    [19]
    沈飞, 闫战科, 叶尊忠, 等. 近红外光谱分析技术在辛硫磷农药残留检测中的应用[J]. 光谱学与光谱分析,2009,29(9):2421−2424. [SHEN F, YAN Z K, YE Z Z, et al. Application of near infrared spectroscopy in the determination of phoxim pesticide residues[J]. Spectroscopy and Spectral Analysis,2009,29(9):2421−2424.
    [20]
    陈迎丽, 何钰, 龚会琴, 等. 基于欧式距离法或因子化法的近红外光谱技术对牛肉掺假鉴定的研究[J]. 食品研究与开发,2019,40(15):141−146. [CHEN Y L, HE Y, GONG H Q, et al. Identification of adulterated beef by near infrared spectroscopy based on Euclidean distance method or factorization method[J]. Food Research and Development,2019,40(15):141−146. doi: 10.12161/j.issn.1005-6521.2019.15.023
    [21]
    戴莹, 冯晓元, 韩平, 等. 近红外光谱技术在果蔬农药残留检测中的应用研究进展[J]. 食品安全质量检测学报,2014,5(3):658−664. [DAI Y, FENG X Y, HAN P, et al. Application of near infrared spectroscopy in the detection of pesticide residues in fruits and vegetables[J]. Journal of Food Safety & Quality,2014,5(3):658−664.
    [22]
    SUN J, GE X, WANG X H, et al. Identification of pesticide residues in lettuce leaves based on near infrared transmission spectroscopy[J]. Journal of Food Process Engineering,2018,41(6):e12816. doi: 10.1111/jfpe.12816
    [23]
    MI GONZÁLEZ-MARTÍN, REVILLA I, VIVAR-QUINTANA A M, et al. Pesticide residues in propolis from Spain and Chile. An approach using near infrared spectroscopy[J]. Talanta,2017,165:533−539. doi: 10.1016/j.talanta.2016.12.061
    [24]
    钱丽丽, 宋雪健, 张东杰, 等. 基于近红外光谱技术的黑龙江地理标志大米产地溯源研究[J]. 中国粮油学报,2017,32(10):185−190,196. [QIAN L L, SONG X J, ZHANG D J, et al. Origin traceability of heilongjiang geographical indications rice based on near infrared reflectance spectroscopy[J]. Journal of the Chinese Cereals and Oils Association,2017,32(10):185−190,196. doi: 10.3969/j.issn.1003-0174.2017.10.031
    [25]
    陈蕊, 张骏, 李晓龙. 蔬菜表面农药残留可见-近红外光谱探测与分类识别研究[J]. 光谱学与光谱分析,2012,32(5):1230−1233. [CHEN R, ZHANG J, LI X L. Detection and classification of pesticide residues on vegetable surface by visible near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2012,32(5):1230−1233. doi: 10.3964/j.issn.1000-0593(2012)05-1230-04
    [26]
    XUE L, LI J, LIU M H, et al. Study of pesticide contaminated navel orange recognition using near infrared spectroscopy[J]. Advanced Materials Research,2011,186:121−125. doi: 10.4028/www.scientific.net/AMR.186.121
    [27]
    宋雪健, 王洪江, 钱丽丽, 等. 基于近红外光谱技术对草莓品质的快速检测研究[J]. 黑龙江八一农垦大学学报,2020,32(3):35−43. [SONG X J, WANG H J, QIAN L L, et al. Rapid detection of strawberry quality based on near infrared spectroscopy[J]. Journal of Heilongjiang Bayi Agricultural University,2020,32(3):35−43. doi: 10.3969/j.issn.1002-2090.2020.03.006
    [28]
    王欣卉, 宋雪健. 近红外光谱技术对稻花香大米品牌的保护研究[J]. 粮食科技与经济,2020,45(11):97−99. [WANG X H, SONG X J. Study on the protection of Daohuaxiang rice brand by near infrared spectroscopy[J]. Grain Technology and Economy,2020,45(11):97−99.
    [29]
    ZHANG X, ZHANG N N. Study on detection of pesticide residues on winter jujube surface by near-infrared spectroscopy combined with PLS and SPA[J]. Agricultural Biotechnology,2018,7(5):222−226,228.
    [30]
    AOIFE G, YUTARO T, COLM O, et al. Investigation of the potential of near infrared spectroscopy for the detection and quantification of pesticides in aqueous solution[J]. American Journal of Analytical Chemistry,2011,2(8A):53−62.
  • Cited by

    Periodical cited type(9)

    1. 陈金足,韦晓雯,农晶晶,韩丽芳,冯学,唐婷范,李利军,程昊. 氢氧化镁-活性炭复合材料的制备及其对糖浆脱色工艺优化. 食品工业科技. 2025(01): 201-207 . 本站查看
    2. 郑婷婷,吕建彪,龚婉莹,王礼中,张文杰,严亮. 白及叶多糖脱色脱蛋白质方法及其抗氧化活性研究. 粮食与油脂. 2024(03): 86-90+105 .
    3. 杨紫焰,李自霖,张翠香,黄丽金,陈贵元,李雪英. 响应面法优选穿心莲多糖大孔树脂脱色工艺及其抗氧化活性研究. 安徽农学通报. 2024(10): 89-95 .
    4. 潘金涛,沈晓岩,陈亮,武小芬,齐慧,刘安,魏东宁,邓明. 油茶壳低聚木糖水热处理液脱色条件优化. 湖南农业科学. 2024(11): 76-80+95 .
    5. 赵玉荣,许金玉,侯宪邦,陆姗姗. 酶解法提取夏枯草中多糖的工艺研究. 药品评价. 2024(08): 946-950 .
    6. 郑艳宇,王平,刘思冶,郝明洋,赵思远,薛晓丽. 黄精多糖的树脂法脱色. 吉林化工学院学报. 2024(09): 41-46 .
    7. 黄丽金,李自霖,陈贵元. 响应面法优化苦胆草多糖脱色工艺. 安徽农学通报. 2023(09): 157-160+170 .
    8. 黄丽金,陈贵元. 苦胆草多糖活性炭脱色工艺研究. 安徽农学通报. 2023(13): 32-36 .
    9. 李自霖,陈贵元. 中药多糖提取物脱色工艺研究进展. 安徽农学通报. 2023(13): 37-40 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return