LI Gen, REN Guoyan, LI Qian, et al. Optimization of Ultrasound-assisted Extraction and Structural Characteristics Analysis of Collagen from Chinese Giant Salamander(Andrias davidianus) Skin[J]. Science and Technology of Food Industry, 2021, 42(22): 160−168. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020154.
Citation: LI Gen, REN Guoyan, LI Qian, et al. Optimization of Ultrasound-assisted Extraction and Structural Characteristics Analysis of Collagen from Chinese Giant Salamander(Andrias davidianus) Skin[J]. Science and Technology of Food Industry, 2021, 42(22): 160−168. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020154.

Optimization of Ultrasound-assisted Extraction and Structural Characteristics Analysis of Collagen from Chinese Giant Salamander(Andrias davidianus) Skin

More Information
  • Received Date: February 22, 2021
  • Available Online: September 13, 2021
  • Artificial-breeding salamander skin contains a lot of collagen. The yield of collagen extracted from the skin of salamander by conventional extraction method was low. In order to improve the collagen yield from the skin of salamander, the ultrasonic-assisted technology was used to treat the skin of salamander. The Box-Behnken design was used to optimize the process of ultrasonic-assisted enzymatic extraction of collagen from the skin of salamander. The effects of ultrasonic power, ultrasonic time and liquid-solid ratio on the collagen yield were investigated. Scanning electron microscopy(SEM), sodium dodecyl sulfate polyacrylamide gel electrophoresis, Fourier transform infrared(FT-IR) and amino acid analysis were used to characterize the collagen of salamander skin. The results showed that the optimal conditions of ultrasonic assisted extraction were as follows: ultrasonic power 201 W, ultrasonic time 26 min, liquid-solid ratio 21:1 mL/g. Under these conditions, the collagen yield of salamander skin was 37.36%±2.61(n=3), close to the predicted value of the model(37.76%), significantly higher than that of salamander skin collagen without ultrasonic treatment(17.56%±1.77%). Ultrasound assisted treatment increased the surface porosity of salamander skin, which was helpful for collagen dissolution. Collagen extracted from the skin of salamander was type I. Ultrasound treatment reduced the content of α-helix and β-turning angles, increased the content of β-folding, irregular coiling and β-anti-parallel folding in the secondary structural units of salamander skin collagen, and made the microstructure more dense, while the amino acid composition did not change significantly. This study would provide an effective method for industrial production of skin collagen of salamander, and would provide a reference for the subsequent development and utilization of artificial-breeding salamander resources.
  • [1]
    CHIQUET M, BIRK D E, BONNEMANN C G, et al. Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils[J]. The International Journal of Biochemistry & Cell Biology,2014,53:51−54.
    [2]
    CUMMING M H, HALL B, HOFMAN K. Isolation and characterisation of major and minor collagens from hyaline cartilage of hoki (Macruronus novaezelandiae)[J]. Marine Drugs,2019,17(4):233. doi: 10.3390/md17040233
    [3]
    LI P H, LU W C, CHAN Y J, et al. Extraction and characterization of collagen from sea cucumber(Holothuria cinerascens) and its potential application in moisturizing cosmetics[J]. Aquaculture,2019:515.
    [4]
    SONG W K, LIU D, SUN L L, et al. Physicochemical and biocompatibility properties of type i collagen from the skin of nile tilapia(Oreochromis niloticus) for biomedical applications[J]. Marine Drugs,2019,17(3):137. doi: 10.3390/md17030137
    [5]
    蓝松, 查道远. 石蛙皮中胶原蛋白提取工艺研究[J]. 广东化工,2019,46(24):20−21. [LAN S, CHA D Y. Study on the extraction technology of collagen in the skin of Rana spinosa[J]. Guangdong Chemical Industry,2019,46(24):20−21.
    [6]
    李梁, 李慧萍, 邵颖, 等. 不同提取方法对东北林蛙皮胶原蛋白理化特性的影响[J]. 食品工业科技,2016,37(14):142−147. [LI L, LI H P, SHAO Y, et al. Effects of different methods on physico-chemical properties of collagen deprived from Rana chensinensis(Rana dybowskii)skins[J]. Science and Technology of Food Industry,2016,37(14):142−147.
    [7]
    ZOU Y, WANG L, CAI P P, et, al. Effect of ultrasound assisted extraction on the physicochemical and functional properties of collagen from soft-shelled turtle calipash[J]. International Journal of Biological Macromolecules,2017,105(Pt3):1602−1610.
    [8]
    任国艳, 宋娅, 康怀彬, 等. 高密度CO2处理提取鲵皮胶原蛋白的工艺优化[J]. 食品科学,2017,38(16):198−204. [REN G Y, SONG Y, KANG H B, et, al. Optimization of processing parameters for collagen extraction from chinese giant salamander(Andrias davidianus) skin after dense phase carbon dioxide pretreatment[J]. Food Science,2017,38(16):198−204. doi: 10.7506/spkx1002-6630-201716031
    [9]
    HE D, ZHU W, ZENG W, et, al. Nutritional and medicinal characteristics of Chinese giant salamander (Andrias davidianus) for applications in healthcare industry by artificial cultivation: A review[J]. Food Science and Human Wellness,2018,7(1):1−10. doi: 10.1016/j.fshw.2018.03.001
    [10]
    LIU D S, LI L, REGENSTEIN J M, et al. Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis)[J]. Food Chemistry,2012,133(4):1441−1448. doi: 10.1016/j.foodchem.2012.02.032
    [11]
    YANG J S, MU T H, MA M M. Optimization of ultrasound-microwave assisted acid extraction of pectin from potato pulp by response surface methodology and its characterization[J]. Food Chemistry,2019,289:351−359. doi: 10.1016/j.foodchem.2019.03.027
    [12]
    XIAO F, ZHU W X, QIU Y Y, et, al. Optimization of demineralization on Cyprinus carpio haematopterus scale by response surface methodology[J]. Journal of food science and Technology,2015,52(3):1684−90. doi: 10.1007/s13197-013-1164-y
    [13]
    杨碧仙, 曹宇, 范琴芳, 等. 大鲵皮胶原蛋白制备工艺优化及其抗氧化活性研究[J]. 食品工业科技,2020,41(5):195−200. [YANG B X, CAO Y, FAN Q F, et, al. Study on optimization of extraction technology of the collagen from andrias davidianus skin and its antioxidant activity[J]. Science and Technology of Food Industry,2020,41(5):195−200.
    [14]
    LIU J, LUO D, LI X, et, al. Effects of inulin on the structure and emulsifying properties of protein components in dough[J]. Food Chemistry,2016,210:235−241. doi: 10.1016/j.foodchem.2016.04.001
    [15]
    LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970,227:681−685.
    [16]
    REN G Y, SUN H, LI G, et, al. Molecular docking and muiltple spectroscopy investigation on the binding characteristics of aloe-emodin to pepsin[J]. Journal of Molecular Structure,2019,1195:369−377. doi: 10.1016/j.molstruc.2019.05.084
    [17]
    CARMEN G S, MARIA B C, PATRICIA R A, et, al. Characterization of collagen from different discarded fish species of the west coast of the Iberian Peninsula[J]. Journal of Aquatic Food Product Technology,2016,25(3):388−399. doi: 10.1080/10498850.2013.865283
    [18]
    TOMSIK A, PAVLIC B, VLADIC J, et, al. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.)[J]. Ultrason Sonochem,2016,29:502−511. doi: 10.1016/j.ultsonch.2015.11.005
    [19]
    MARTÍNEZ R T, BENEDITO J V, WATSON N J, et, al. Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from mango peels (Mangifera indica L.)[J]. Food and Bioproducts Processing,2020,122:41−54. doi: 10.1016/j.fbp.2020.03.011
    [20]
    LIU Y, MA X Y, LIU L N, et, al. Ultrasonic-assisted extraction and functional properties of wampee seed protein[J]. Food Science and Technology,2019,39(Suppl1):324−331.
    [21]
    MANSUR A R, SONG N E, JANG H W, et, al. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts[J]. Food Chemistry,2019,293:438−445. doi: 10.1016/j.foodchem.2019.05.003
    [22]
    XU Y, LI Y T, BAO T, et, al. A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates[J]. Food Chemistry,2017,221:114−122. doi: 10.1016/j.foodchem.2016.10.053
    [23]
    MOHAMMADI R, MOHAMMADIFAR M A, MORTAZAVIAN A M, et, al. Extraction optimization of pepsin-soluble collagen from eggshell membrane by response surface methodology (RSM)[J]. Food Chemistry,2016,190:186−193. doi: 10.1016/j.foodchem.2015.05.073
    [24]
    LIAO N B, ZHONG J J, YE X Q, et al. Ultrasonic-assisted enzymatic extraction of polysaccharide from Corbicula fluminea: Characterization and antioxidant activity[J]. LWT-Food science and technology,2015,60(2):1113−1121. doi: 10.1016/j.lwt.2014.10.009
    [25]
    CAO S G, WANG Y, XING L J, et, al. Structure and physical properties of gelatin from bovine bone collagen influenced by acid pretreatment and pepsin[J]. Food and Bioproducts Processing,2020,121:213−223. doi: 10.1016/j.fbp.2020.03.001
    [26]
    ODABAŞ H İ, KOCA I. Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods[J]. Industrial Crops and Products,2016,91:114−124. doi: 10.1016/j.indcrop.2016.05.033
    [27]
    QI J, BENIPAL N, WANG H, et, al. Metal-catalyst-free carbohydrazide fuel cells with three-dimensional graphene anodes[J]. Chemsuschem,2015,8(7):1147−1150. doi: 10.1002/cssc.201403032
    [28]
    WU J L, GUO X B, LIU H, et, al. Isolation and comparative study on the characterization of guanidine hydrochloride soluble collagen and pepsin soluble collagen from the body of surf clam shell(Coelomactra antiquata)[J]. Foods,2019,8(1):11. doi: 10.3390/foods8010011
    [29]
    李妍花. 鸡爪皮胶原蛋白提取、自组装和消化特性研究[D]. 镇江: 江苏大学, 2017.

    LI Y H. Study on the extraction, self-assembly and digestion characteristics of chicken claw skin collagen[D]. Zhenjiang: Jiangsu University, 2017.
    [30]
    ZHOU C, LI Y, YU X, et al. Extraction and characterization of chicken feet soluble collagen[J]. LWT-Food Science and Technology,2016,74:145−153. doi: 10.1016/j.lwt.2016.07.024
    [31]
    AKRAM A N, ZHANG C. Effect of ultrasonication on the yield, functional and physicochemical characteristics of collagen-II from chicken sternal cartilage[J]. Food Chemistry,2019,307:125544.
    [32]
    JIANG M, HUANG C R, WANG Q, et, al. Combined spectroscopies and molecular docking approach to characterizing the binding interaction between lisinopril and bovine serum albumin[J]. Luminescence: The Journal of Biological and Chenical Luminescence,2016,31(2):468−477. doi: 10.1002/bio.2984
    [33]
    DAS S, ROHMAN M A, ROY A S. Exploring the non-covalent binding behaviours of 7-hydroxyflavone and 3-hydroxyflavone with hen egg white lysozyme: Multi-spectroscopic and molecular docking perspectives[J]. Journal of Photochemistry and Photobiology, B: Biology,2018,180:25−38. doi: 10.1016/j.jphotobiol.2018.01.021
    [34]
    黄丹丹, 马良, 韩霜, 等. 超声预处理影响金枪鱼皮胶原酶解工艺及机理初探[J]. 食品与发酵工业,2017,43(4):141−146. [HUANG D D, MA L, HAN S, et al. The effect of ultrasonic pretreatment on hydrolysate of tuna skin and study on its mechanism[J]. Food and Fermentation Industries,2017,43(4):141−146.
    [35]
    李可, 李三影, 扶磊, 等. 低频高强度超声波对鸡胸肉肌原纤维蛋白性质的影响[J]. 食品科学,2020,41(23):122−129. [LI K, LI S Y, FU, L, et, al. Effect of low-frequency and high-intensity ultrasound treatment on characteristics of chicken breast myofibrillar protein[J]. Food Science,2020,41(23):122−129. doi: 10.7506/spkx1002-6630-20191205-067
    [36]
    BENJAKUL S, THIANSILAKUL Y, VISESSANGUAN W, et, al. Extraction and characterisation of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus)[J]. Journal of the Science of Food and Agriculture,2010,90(1):132−138. doi: 10.1002/jsfa.3795
    [37]
    LIN Y K, LIU D C. Comparison of physical–chemical properties of type I collagen from different species[J]. Food Chemistry,2006,99(2):244−251. doi: 10.1016/j.foodchem.2005.06.053
    [38]
    LI Z R, WANG B, CHI C F, et, al. Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius)[J]. Food Hydrocolloids,2013,31(1):103−113. doi: 10.1016/j.foodhyd.2012.10.001
    [39]
    YOUSEFI M, ARIFFIN F, HUDA N. An alternative source of type I collagen based on by-product with higher thermal stability[J]. Food Hydrocolloids,2017,63:372−382. doi: 10.1016/j.foodhyd.2016.09.029
    [40]
    RAHAMAN T, VASILJEVIC T, RAMCHANDRAN L. Effect of processing on conformational changes of food proteins related to allergenicity[J]. Trends in Food Science & Technology,2016,49:24−34.
  • Cited by

    Periodical cited type(13)

    1. 宗子歆,姚子昂,张玉龙,陈鑫,曹际娟,胡冰. Ⅰ型胶原蛋白的结构、提取及应用研究进展. 食品研究与开发. 2025(04): 169-176 .
    2. 龚受基,覃媚,戴梓茹,蒋红明,郭德军. 响应面法优化相思藤黄酮提取工艺及其体外抗氧化活性分析. 食品工业科技. 2024(06): 178-185 . 本站查看
    3. 罗联钰,徐清清,朱金燕,魏维鑫,吴清朋,刘家光. 超声前处理对牡蛎蛋白水解度的影响. 食品工业. 2024(04): 17-22 .
    4. 武婷,康明丽,程雅如,申彤,李依孜. 微波辅助酶法提取香菇柄蛋白工艺研究. 粮食与油脂. 2024(09): 129-134 .
    5. 张倩,张文博,陈滢竹,姜旭,汤璐,王刚,李艳丽. 榛蘑蛋白提取工艺的优化研究. 中国调味品. 2023(05): 118-124 .
    6. 窦容容,赵春青,颜子恒,桑亚新,孙纪录,亢春雨. 超声波对鲟鱼皮酸溶性胶原蛋白提取及理化特性的影响. 中国食品学报. 2023(10): 125-135 .
    7. 李璐,李鹏,孙慧娟,马凯华,马俪珍,李玲. 响应面优化超声波辅助革胡子鲶鱼鱼头汤熬煮工艺. 肉类研究. 2022(02): 27-32 .
    8. 黄可承,宫萱,唐嘉诚,陈彦婕,包建强. 水产品副产物胶原蛋白制备方法及应用. 精细化工. 2022(09): 1757-1766 .
    9. 赵琼瑜,胡鉴,李彩燕,徐树杰,宋伟. 超声波辅助鳖甲脱钙工艺优化及其对胶原蛋白生化特征的影响. 食品工业科技. 2022(22): 39-51 . 本站查看
    10. 李家柔,倪剑波,何静怡,许惠雅,井璐楠,施文正. 超声辅助酶法提取罗非鱼皮胶原蛋白及其溶解特性. 渔业现代化. 2022(06): 127-134 .
    11. 陈文娟. 响应面法优化超声协同胃蛋白酶提取鲣鱼皮胶原蛋白的工艺研究. 延边大学农学学报. 2022(04): 60-66 .
    12. 魏沈芳,张顺棠,刘昆仑,段晓杰,高立栋. 超声辅助酶法制备鸡皮胶原蛋白的工艺优化. 河南工业大学学报(自然科学版). 2022(06): 59-66 .
    13. 袁子杰,秦洋,杨凤英,邓志萍. 超声辅助技术开发新型黑茶酒. 食品科技. 2021(11): 90-97 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (305) PDF downloads (31) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return