HUANG Wen, YU Kenan, LIAO Wanwen, et al. Optimization of Enzymatic Hydrolysis of Tilapia Scale Calcium Binding Peptides by Response Surface Methodology and Its Structural Characterization[J]. Science and Technology of Food Industry, 2021, 42(21): 190−196. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020099.
Citation: HUANG Wen, YU Kenan, LIAO Wanwen, et al. Optimization of Enzymatic Hydrolysis of Tilapia Scale Calcium Binding Peptides by Response Surface Methodology and Its Structural Characterization[J]. Science and Technology of Food Industry, 2021, 42(21): 190−196. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020099.

Optimization of Enzymatic Hydrolysis of Tilapia Scale Calcium Binding Peptides by Response Surface Methodology and Its Structural Characterization

More Information
  • Received Date: February 17, 2021
  • Available Online: August 27, 2021
  • In order to obtain the optimum enzyme hydrolysis conditions and chelating properties of tilapia scale calcium binding peptides, and provide basis for study of promoting calcium absorption of active material, in this study, the decalcified tilapia scales as raw material and calcium chelation activity as an index, papain was selected to optimize enzyme hydrolysis of the tilapia scales to obtain tilapia scale calcium binding peptides. The properties of the tilapia scale calcium binding peptides were characterized by amino acid analysis, ultraviolet-visible spectroscopy and fourier transform infrared spectroscopy. The optimal enzymatic hydrolysis conditions were as follows: the concentration of substrate 8%, time 2 h, enzyme to substrate ratio 0.3%, pH7 and temperature 60 ℃. Under these conditions, the calcium chelation activity of the enzymatic hydrolysate was (38.31±0.4) µg/mL. The results of characterization showed that, after chelating calcium, the contents of aspartic acid, glutamic acid, glycine, lysine, serine, cysteine and histidine in peptide-calcium chelate increased by 0.88%, 1.48%, 0.34%, 0.53%, 0.04%, 0.38% and 0.46%, respectively. The carboxyl oxygen and amino nitrogen groups in the calcium binding peptides participated in binding with calcium ions to form the tilapia scale peptide-calcium chelate. Tilapia scale calcium binding peptides has high calcium chelation activity, which lays a foundation for the production and application of calcium supplements.
  • [1]
    张红燕, 袁永明, 贺艳辉, 等. 世界罗非鱼生产和贸易现状分析[J]. 农业展望,2016,12(5):77−80. [ZHANG H Y, YUAN Y M, HE Y H, et al. Current situation on global tilapia production and trade[J]. Agricultural Outlook,2016,12(5):77−80. doi: 10.3969/j.issn.1673-3908.2016.05.018
    [2]
    SUN N, WU H T, DU M, et al. Food protein-derived calcium chelating peptides: A review[J]. Trends in Food Science & Technology,2016,58:140−148.
    [3]
    高敏, 汪建明, 甄灵慧, 等. 牛骨多肽螯合物的制备及结构表征[J]. 食品科学,2020,41(8):256−261. [GAO M, WANG J M, ZHEN L H, et al. Preparation and structural characterization of bovine bone polypeptide-calcium chelate[J]. Food Science,2020,41(8):256−261. doi: 10.7506/spkx1002-6630-20181217-183
    [4]
    WALTERS M E, ESFANDI R, TSOPMO A. Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption[J]. Foods (Basel, Switzerland),2018,7(10):172.
    [5]
    ZHAO N N, HU J, HOU T, et al. Effects of desalted duck egg white peptides and their products on calcium absorption in rats[J]. Journal of Functional Foods,2014,8:234−242. doi: 10.1016/j.jff.2014.03.022
    [6]
    WU W M, HE L C, LIANG Y H, et al. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis[J]. Food Chemistry,2019,284:80−89. doi: 10.1016/j.foodchem.2019.01.103
    [7]
    范轶欧, 刘爱玲, 何宇纳, 等. 中国成年居民营养素摄入状况的评价[J]. 营养学报,2012,34(1):15−19. [FAN Y O, LIU A L, HE Y N, et al. Assessment of nutrient adequacy of adult residents in China[J]. Journal of Nutrition,2012,34(1):15−19.
    [8]
    HEANEY R P, WEAVER C M, FITZSIMMONS M L. Soybean phytate content: Effect on calcium absorption[J]. American Journal of Clinical Nutrition,1991,53(3):745−747. doi: 10.1093/ajcn/53.3.745
    [9]
    曾勇, 李庆, 何睿, 等. 单一钙制剂与钙制剂联合维生素D干预治疗老年男性骨质疏松症疗效的随机对照临床研究[J]. 临床和实验医学杂志,2014,13(8):625−629. [ZENG Y, LI Q, HE R, et al. The comparison research of calcium and calcium joint vitamin D intervention in the treatment of osteoporosis in older men[J]. Journal of Clinical and Experimental Medicine,2014,13(8):625−629. doi: 10.3969/j.issn.1671-4695.2014.08.007
    [10]
    杜春莹, 胡肇衡, 陈玲, 等. 阿仑膦酸钠对绝经后骨质疏松症患者骨代谢指标的影响[J]. 中国骨质疏松杂志,2014,20(1):22−25. [DU C Y, HU Z H, CHEN L, et al. Effect of alendronate sodium on bone metabolism in postmenopausal osteoporosis[J]. Chinese Journal of Osteoporosis,2014,20(1):22−25.
    [11]
    许闫严, 张克良, 魏忠民, 等. 雌激素对去势骨质疏松症大鼠骨密度和骨代谢影响的实验研究[J]. 中国骨质疏松杂志,2018,24(6):776−780. [XU Y Y, ZHANG K L, WEI Z M, et al. Experimental study of the effect of estrogen on bone mineral density and bone metabolism in osteoporosis rats[J]. Chinese Journal of Osteoporosis,2018,24(6):776−780. doi: 10.3969/j.issn.1006-7108.2018.06.014
    [12]
    李国新, 袁忠治, 温健, 等. 口服及静脉应用双磷酸盐治疗绝经后的骨质疏松临床研究[J]. 中国骨质疏松杂志,2013,19(9):988−990. [LI G X, YUAN Z Z, WEN J, et al. Clinical study of oral administration or intravenous injection of bisphosphonate for the treatment of postmenopausal osteoporosis[J]. Chinese Journal of Osteoporosis,2013,19(9):988−990. doi: 10.3969/j.issn.1006-7108.2013.09.025
    [13]
    MACLAUGHLIN E J, SLEEPER R B, MCNATTY D, et al. Management of age-related osteoporosis and prevention of associated fractures[J]. Therapeutics and Clinical Risk Management,2006,2(3):281−295. doi: 10.2147/tcrm.2006.2.3.281
    [14]
    OLGA R I K, ZDENKO K, PETR K, et al. Real-world management of women with postmenopausal osteoporosis treated with denosumab:A prospective observational study in the czech republic and slovakia[J]. Advances in Therapy,2018,35:1713−1728. doi: 10.1007/s12325-018-0779-9
    [15]
    LI L N, ZENG Z, CAI G P. Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1[J]. Phytomedicine,2011,18(11):985−989. doi: 10.1016/j.phymed.2011.03.002
    [16]
    LIU W Y, LU J, GAO F, et al. Preparation, characterization and identification of calcium-chelating Atlantic salmon (Salmo salar L.) ossein oligopeptides[J]. European Food Research and Technology,2015,241(6):851−860. doi: 10.1007/s00217-015-2510-2
    [17]
    CHEN Q R, GUO L D, DU F, et al. The chelating peptide (GPAGPHGPPG) derived from Alaska pollock skin enhances calcium, zinc and iron transport in Caco-2 cells[J]. International Journal of Food Science & Technology,2017,52(5):1283−1290.
    [18]
    PEREGO S, DEL F E, DE LUCA P, et al. Calcium bioaccessibility and uptake by human intestinal like cells following in vitro digestion of casein phosphopeptide-calcium aggregates[J]. Food & Function,2015,6(6):1796−1807.
    [19]
    赵梓月, 王思远, 廖森泰, 等. 多肽螯合钙的研究进展[J]. 食品研究与开发,2020,41(5):200−206. [ZHAO Z Y, WANG S Y, LIAO S T, et al. Progress in research on peptide chelated calcium[J]. Food Research and Development,2020,41(5):200−206.
    [20]
    AUudrey D, Janne P, Véronique F S, et al. Biological effect of hydrolyzed collagen on bone metabolism[J]. Taylor & Francis,2017,57(9):1922−1937.
    [21]
    廖婉雯, 苗建银, 陈雨馨, 等. 罗非鱼骨胶原钙螯合肽的酶解制备[J]. 现代食品科技,2019,35(1):129−136. [LIAO W W, MIAO J Y, CHEN Y X, et al. Preparation of tilapia bone collagen calcium chelating peptides by enzymatic hydrolysis[J]. Modern Food Science and Technology,2019,35(1):129−136.
    [22]
    LIAO W W, LIU S J, LIU X R, et al. The purification, identification and bioactivity study of a novel calcium-binding peptide from casein hydrolysate.[J]. Food & Function,2019,10(12):7724−7732.
    [23]
    Meenal S P, Virendra K R, Aniruddha B P. Enzymatic hydrolysis of castor oil: Process intensification studies[J]. Biochemical Engineering Journal,2006,31(1):31−41. doi: 10.1016/j.bej.2006.05.017
    [24]
    YAO Y M, WANG M Y, LIU Y, et al. Insights into the improvement of the enzymatic hydrolysis of bovine bone protein using lipase pretreatment[J]. Food Chemistry,2020,302:1251991−1251998.
    [25]
    曹吉利, 张倩, 谭源, 等. 响应面法优化酶解羊乳酪蛋白制备抗氧化肽[J]. 食品工业,2018,39(3):107−111. [CAO J L, ZHANG Q, TAN Y, et al. Optimization of preparation of antioxidant peptides from goat milk casein by enzymatic hydrolysis[J]. The Food Industry,2018,39(3):107−111.
    [26]
    王琴, 向斌, 薛飞, 等. 酶法去除米糠淀粉及其酶解动力学研究[J]. 农产品加工·综合刊,2009(12):68−70. [WANG Q, XIANG B, XUE F, et al. Study on enzymatic removal of rice bran starch and its enzymatic hydrolysis kinetics[J]. Farm Products Processing,2009(12):68−70. doi: 10.3969/j.issn.1671-9646-C.2009.12.038
    [27]
    HONG H, FAN H B, CHALAMAIAH M, et al. Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives[J]. Food Chemistry,2019,301:125222. doi: 10.1016/j.foodchem.2019.125222
    [28]
    Baha E A, Joaquín G, Assaad S, et al. Characteristics and functional properties of gelatin extracted from squid (Loligo vulgaris) skin[J]. LWT-Food Science and Technology,2016,65(1):924−931.
    [29]
    SONG S Q, LI S S, FAN L, et al. A novel method for beef bone protein extraction by lipase-pretreatment and its application in the Maillard reaction[J]. Food Chemistry,2016,208(1):81−88.
    [30]
    MANYAK A R, MURPHY C B, MARTELL A E. Metal chelate compounds of glycylglycine and glycylglycylglycine[J]. Archives of Biochemistry and Biophysics,1955,59(2):373−382. doi: 10.1016/0003-9861(55)90504-X
    [31]
    CHAUD M V, IZUMI C, NAHAAL Z, et al. Iron derivatives from casein hydrolysates as a potential source in the treatment of iron deficiency[J]. Journal of Agricultural and Food Chemistry,2002,50(4):871. doi: 10.1021/jf0111312
    [32]
    LIAO W W, CHEN H, JIN W, et al. Three newly isolated calcium-chelating peptides from tilapia bone collagen hydrolysate enhance calcium absorption activity in intestinal Caco-2 cells[J]. Journal of Agricultural and Food Chemistry,2020,68(7):2091−2098. doi: 10.1021/acs.jafc.9b07602
    [33]
    刘晓容, 郭俊斌, 廖婉雯, 等. 酶法制备乳源钙螯合肽及其特性表征[J]. 食品研究与开发,2020,41(8):60−67. [LIU X R, GUO J B, LIAO W W, et al. Preparation and characterization of milk-derived calcium chelating peptide by enzymatic method[J]. Food Research and Development,2020,41(8):60−67. doi: 10.12161/j.issn.1005-6521.2020.08.010
    [34]
    HUANG G R, REN Z Y, JIAN J X. Separation of iron-binding peptides from shrimp processing by-products hydrolysates[J]. Food and Bioprocess Technology,2011,4(8):1527−1532. doi: 10.1007/s11947-010-0416-3
    [35]
    SUN N, JIN Z Q, LI D M, et al. An exploration of the calcium-binding mode of egg white peptide, Asp-His-Thr-Lys-Glu, and in vitro calcium absorption studies of peptide-calcium complex[J]. Journal of Agricultural and Food Chemistry,2017,65(44):9782. doi: 10.1021/acs.jafc.7b03705
    [36]
    Peng Z, Hou H, Zhang K, et al. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats[J]. Food Chemistry,2017,221(15):373−378.
    [37]
    Miller G D, Jarvis J K, McBean L D. The importance of meeting calcium needs with foods[J]. Journal of the American College of Nutrition,2001,20(2 Suppl):168S−185S.
    [38]
    El H H, Fakharedine N, Ait B G, et al. Treatment of olive mill waste-water by aerobic biodegradation: An analytical study using gel permeation chromatography, ultraviolet-visible and Fourier transform infrared spectroscopy[J]. Bioresource Technology,2007,98(18):3513−3520. doi: 10.1016/j.biortech.2006.11.033
    [39]
    Farrell H J, Qi P X, Wickham E D, et al. Secondary structural studies of bovine caseins: Structure and temperature dependence of beta-casein phosphopeptide (1-25) as analyzed by circular dichroism, FTIR spectroscopy, and analytical ultracentrifugation[J]. Journal of Protein Chemistry,2002,21(5):307−321. doi: 10.1023/A:1019992900455
    [40]
    WANG Y, CUI F Z, ZHAI Y, et al. Investigations of the initial stage of recombinant human-like collagen mineralization[J]. Materials Science & Engineering C,2005,26(4):635−638.
    [41]
    CHEN D, LIU Z Y, HUANG W Q, et al. Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate[J]. Journal of Functional Foods,2013,5(2):689−697. doi: 10.1016/j.jff.2013.01.012
  • Cited by

    Periodical cited type(7)

    1. 李晓娟,曾新安,蔡锦林. 黑加仑酒稳定性的分析研究. 酿酒科技. 2024(01): 65-71 .
    2. 赵楠,李秉桓,宋宇宁,韩钊,武淑芬. β-乳球蛋白与红曲色素非共价相互作用及其对色素稳定性的影响. 食品科学技术学报. 2024(01): 32-44 .
    3. 刘双平,赵泽素,刘海坡,吴玉峰,毛健. 避光保存条件下影响红曲酒色价稳定的因素. 食品与发酵工业. 2023(05): 109-115 .
    4. 徐勇,邱子娅,陈莎,张佳兰,高梦祥,李利. 温度对红色红曲菌M7液态发酵产monascin和ankaflavin的影响. 河北大学学报(自然科学版). 2023(04): 408-419 .
    5. 何贝贝,刘彩,陈莎,高梦祥,李利. 色氨酸和苏氨酸衍生化红曲红色素的稳定性研究. 食品研究与开发. 2022(03): 21-27 .
    6. 谭兰英,覃爱红,谢凤娇. 电渗析设备在红曲黄色素生产中的应用研究. 肉类工业. 2022(02): 43-47 .
    7. 杨义,刘秀明,王紫燕,董石飞,唐石云,韩敬美. 10种水溶性合成着色剂的加热特性. 西南农业学报. 2022(05): 1108-1116 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views (270) PDF downloads (24) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return