HUANG Wen, YU Kenan, LIAO Wanwen, et al. Optimization of Enzymatic Hydrolysis of Tilapia Scale Calcium Binding Peptides by Response Surface Methodology and Its Structural Characterization[J]. Science and Technology of Food Industry, 2021, 42(21): 190−196. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020099.
Citation: HUANG Wen, YU Kenan, LIAO Wanwen, et al. Optimization of Enzymatic Hydrolysis of Tilapia Scale Calcium Binding Peptides by Response Surface Methodology and Its Structural Characterization[J]. Science and Technology of Food Industry, 2021, 42(21): 190−196. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020099.

Optimization of Enzymatic Hydrolysis of Tilapia Scale Calcium Binding Peptides by Response Surface Methodology and Its Structural Characterization

More Information
  • Received Date: February 17, 2021
  • Available Online: August 27, 2021
  • In order to obtain the optimum enzyme hydrolysis conditions and chelating properties of tilapia scale calcium binding peptides, and provide basis for study of promoting calcium absorption of active material, in this study, the decalcified tilapia scales as raw material and calcium chelation activity as an index, papain was selected to optimize enzyme hydrolysis of the tilapia scales to obtain tilapia scale calcium binding peptides. The properties of the tilapia scale calcium binding peptides were characterized by amino acid analysis, ultraviolet-visible spectroscopy and fourier transform infrared spectroscopy. The optimal enzymatic hydrolysis conditions were as follows: the concentration of substrate 8%, time 2 h, enzyme to substrate ratio 0.3%, pH7 and temperature 60 ℃. Under these conditions, the calcium chelation activity of the enzymatic hydrolysate was (38.31±0.4) µg/mL. The results of characterization showed that, after chelating calcium, the contents of aspartic acid, glutamic acid, glycine, lysine, serine, cysteine and histidine in peptide-calcium chelate increased by 0.88%, 1.48%, 0.34%, 0.53%, 0.04%, 0.38% and 0.46%, respectively. The carboxyl oxygen and amino nitrogen groups in the calcium binding peptides participated in binding with calcium ions to form the tilapia scale peptide-calcium chelate. Tilapia scale calcium binding peptides has high calcium chelation activity, which lays a foundation for the production and application of calcium supplements.
  • [1]
    张红燕, 袁永明, 贺艳辉, 等. 世界罗非鱼生产和贸易现状分析[J]. 农业展望,2016,12(5):77−80. [ZHANG H Y, YUAN Y M, HE Y H, et al. Current situation on global tilapia production and trade[J]. Agricultural Outlook,2016,12(5):77−80. doi: 10.3969/j.issn.1673-3908.2016.05.018
    [2]
    SUN N, WU H T, DU M, et al. Food protein-derived calcium chelating peptides: A review[J]. Trends in Food Science & Technology,2016,58:140−148.
    [3]
    高敏, 汪建明, 甄灵慧, 等. 牛骨多肽螯合物的制备及结构表征[J]. 食品科学,2020,41(8):256−261. [GAO M, WANG J M, ZHEN L H, et al. Preparation and structural characterization of bovine bone polypeptide-calcium chelate[J]. Food Science,2020,41(8):256−261. doi: 10.7506/spkx1002-6630-20181217-183
    [4]
    WALTERS M E, ESFANDI R, TSOPMO A. Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption[J]. Foods (Basel, Switzerland),2018,7(10):172.
    [5]
    ZHAO N N, HU J, HOU T, et al. Effects of desalted duck egg white peptides and their products on calcium absorption in rats[J]. Journal of Functional Foods,2014,8:234−242. doi: 10.1016/j.jff.2014.03.022
    [6]
    WU W M, HE L C, LIANG Y H, et al. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis[J]. Food Chemistry,2019,284:80−89. doi: 10.1016/j.foodchem.2019.01.103
    [7]
    范轶欧, 刘爱玲, 何宇纳, 等. 中国成年居民营养素摄入状况的评价[J]. 营养学报,2012,34(1):15−19. [FAN Y O, LIU A L, HE Y N, et al. Assessment of nutrient adequacy of adult residents in China[J]. Journal of Nutrition,2012,34(1):15−19.
    [8]
    HEANEY R P, WEAVER C M, FITZSIMMONS M L. Soybean phytate content: Effect on calcium absorption[J]. American Journal of Clinical Nutrition,1991,53(3):745−747. doi: 10.1093/ajcn/53.3.745
    [9]
    曾勇, 李庆, 何睿, 等. 单一钙制剂与钙制剂联合维生素D干预治疗老年男性骨质疏松症疗效的随机对照临床研究[J]. 临床和实验医学杂志,2014,13(8):625−629. [ZENG Y, LI Q, HE R, et al. The comparison research of calcium and calcium joint vitamin D intervention in the treatment of osteoporosis in older men[J]. Journal of Clinical and Experimental Medicine,2014,13(8):625−629. doi: 10.3969/j.issn.1671-4695.2014.08.007
    [10]
    杜春莹, 胡肇衡, 陈玲, 等. 阿仑膦酸钠对绝经后骨质疏松症患者骨代谢指标的影响[J]. 中国骨质疏松杂志,2014,20(1):22−25. [DU C Y, HU Z H, CHEN L, et al. Effect of alendronate sodium on bone metabolism in postmenopausal osteoporosis[J]. Chinese Journal of Osteoporosis,2014,20(1):22−25.
    [11]
    许闫严, 张克良, 魏忠民, 等. 雌激素对去势骨质疏松症大鼠骨密度和骨代谢影响的实验研究[J]. 中国骨质疏松杂志,2018,24(6):776−780. [XU Y Y, ZHANG K L, WEI Z M, et al. Experimental study of the effect of estrogen on bone mineral density and bone metabolism in osteoporosis rats[J]. Chinese Journal of Osteoporosis,2018,24(6):776−780. doi: 10.3969/j.issn.1006-7108.2018.06.014
    [12]
    李国新, 袁忠治, 温健, 等. 口服及静脉应用双磷酸盐治疗绝经后的骨质疏松临床研究[J]. 中国骨质疏松杂志,2013,19(9):988−990. [LI G X, YUAN Z Z, WEN J, et al. Clinical study of oral administration or intravenous injection of bisphosphonate for the treatment of postmenopausal osteoporosis[J]. Chinese Journal of Osteoporosis,2013,19(9):988−990. doi: 10.3969/j.issn.1006-7108.2013.09.025
    [13]
    MACLAUGHLIN E J, SLEEPER R B, MCNATTY D, et al. Management of age-related osteoporosis and prevention of associated fractures[J]. Therapeutics and Clinical Risk Management,2006,2(3):281−295. doi: 10.2147/tcrm.2006.2.3.281
    [14]
    OLGA R I K, ZDENKO K, PETR K, et al. Real-world management of women with postmenopausal osteoporosis treated with denosumab:A prospective observational study in the czech republic and slovakia[J]. Advances in Therapy,2018,35:1713−1728. doi: 10.1007/s12325-018-0779-9
    [15]
    LI L N, ZENG Z, CAI G P. Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1[J]. Phytomedicine,2011,18(11):985−989. doi: 10.1016/j.phymed.2011.03.002
    [16]
    LIU W Y, LU J, GAO F, et al. Preparation, characterization and identification of calcium-chelating Atlantic salmon (Salmo salar L.) ossein oligopeptides[J]. European Food Research and Technology,2015,241(6):851−860. doi: 10.1007/s00217-015-2510-2
    [17]
    CHEN Q R, GUO L D, DU F, et al. The chelating peptide (GPAGPHGPPG) derived from Alaska pollock skin enhances calcium, zinc and iron transport in Caco-2 cells[J]. International Journal of Food Science & Technology,2017,52(5):1283−1290.
    [18]
    PEREGO S, DEL F E, DE LUCA P, et al. Calcium bioaccessibility and uptake by human intestinal like cells following in vitro digestion of casein phosphopeptide-calcium aggregates[J]. Food & Function,2015,6(6):1796−1807.
    [19]
    赵梓月, 王思远, 廖森泰, 等. 多肽螯合钙的研究进展[J]. 食品研究与开发,2020,41(5):200−206. [ZHAO Z Y, WANG S Y, LIAO S T, et al. Progress in research on peptide chelated calcium[J]. Food Research and Development,2020,41(5):200−206.
    [20]
    AUudrey D, Janne P, Véronique F S, et al. Biological effect of hydrolyzed collagen on bone metabolism[J]. Taylor & Francis,2017,57(9):1922−1937.
    [21]
    廖婉雯, 苗建银, 陈雨馨, 等. 罗非鱼骨胶原钙螯合肽的酶解制备[J]. 现代食品科技,2019,35(1):129−136. [LIAO W W, MIAO J Y, CHEN Y X, et al. Preparation of tilapia bone collagen calcium chelating peptides by enzymatic hydrolysis[J]. Modern Food Science and Technology,2019,35(1):129−136.
    [22]
    LIAO W W, LIU S J, LIU X R, et al. The purification, identification and bioactivity study of a novel calcium-binding peptide from casein hydrolysate.[J]. Food & Function,2019,10(12):7724−7732.
    [23]
    Meenal S P, Virendra K R, Aniruddha B P. Enzymatic hydrolysis of castor oil: Process intensification studies[J]. Biochemical Engineering Journal,2006,31(1):31−41. doi: 10.1016/j.bej.2006.05.017
    [24]
    YAO Y M, WANG M Y, LIU Y, et al. Insights into the improvement of the enzymatic hydrolysis of bovine bone protein using lipase pretreatment[J]. Food Chemistry,2020,302:1251991−1251998.
    [25]
    曹吉利, 张倩, 谭源, 等. 响应面法优化酶解羊乳酪蛋白制备抗氧化肽[J]. 食品工业,2018,39(3):107−111. [CAO J L, ZHANG Q, TAN Y, et al. Optimization of preparation of antioxidant peptides from goat milk casein by enzymatic hydrolysis[J]. The Food Industry,2018,39(3):107−111.
    [26]
    王琴, 向斌, 薛飞, 等. 酶法去除米糠淀粉及其酶解动力学研究[J]. 农产品加工·综合刊,2009(12):68−70. [WANG Q, XIANG B, XUE F, et al. Study on enzymatic removal of rice bran starch and its enzymatic hydrolysis kinetics[J]. Farm Products Processing,2009(12):68−70. doi: 10.3969/j.issn.1671-9646-C.2009.12.038
    [27]
    HONG H, FAN H B, CHALAMAIAH M, et al. Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives[J]. Food Chemistry,2019,301:125222. doi: 10.1016/j.foodchem.2019.125222
    [28]
    Baha E A, Joaquín G, Assaad S, et al. Characteristics and functional properties of gelatin extracted from squid (Loligo vulgaris) skin[J]. LWT-Food Science and Technology,2016,65(1):924−931.
    [29]
    SONG S Q, LI S S, FAN L, et al. A novel method for beef bone protein extraction by lipase-pretreatment and its application in the Maillard reaction[J]. Food Chemistry,2016,208(1):81−88.
    [30]
    MANYAK A R, MURPHY C B, MARTELL A E. Metal chelate compounds of glycylglycine and glycylglycylglycine[J]. Archives of Biochemistry and Biophysics,1955,59(2):373−382. doi: 10.1016/0003-9861(55)90504-X
    [31]
    CHAUD M V, IZUMI C, NAHAAL Z, et al. Iron derivatives from casein hydrolysates as a potential source in the treatment of iron deficiency[J]. Journal of Agricultural and Food Chemistry,2002,50(4):871. doi: 10.1021/jf0111312
    [32]
    LIAO W W, CHEN H, JIN W, et al. Three newly isolated calcium-chelating peptides from tilapia bone collagen hydrolysate enhance calcium absorption activity in intestinal Caco-2 cells[J]. Journal of Agricultural and Food Chemistry,2020,68(7):2091−2098. doi: 10.1021/acs.jafc.9b07602
    [33]
    刘晓容, 郭俊斌, 廖婉雯, 等. 酶法制备乳源钙螯合肽及其特性表征[J]. 食品研究与开发,2020,41(8):60−67. [LIU X R, GUO J B, LIAO W W, et al. Preparation and characterization of milk-derived calcium chelating peptide by enzymatic method[J]. Food Research and Development,2020,41(8):60−67. doi: 10.12161/j.issn.1005-6521.2020.08.010
    [34]
    HUANG G R, REN Z Y, JIAN J X. Separation of iron-binding peptides from shrimp processing by-products hydrolysates[J]. Food and Bioprocess Technology,2011,4(8):1527−1532. doi: 10.1007/s11947-010-0416-3
    [35]
    SUN N, JIN Z Q, LI D M, et al. An exploration of the calcium-binding mode of egg white peptide, Asp-His-Thr-Lys-Glu, and in vitro calcium absorption studies of peptide-calcium complex[J]. Journal of Agricultural and Food Chemistry,2017,65(44):9782. doi: 10.1021/acs.jafc.7b03705
    [36]
    Peng Z, Hou H, Zhang K, et al. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats[J]. Food Chemistry,2017,221(15):373−378.
    [37]
    Miller G D, Jarvis J K, McBean L D. The importance of meeting calcium needs with foods[J]. Journal of the American College of Nutrition,2001,20(2 Suppl):168S−185S.
    [38]
    El H H, Fakharedine N, Ait B G, et al. Treatment of olive mill waste-water by aerobic biodegradation: An analytical study using gel permeation chromatography, ultraviolet-visible and Fourier transform infrared spectroscopy[J]. Bioresource Technology,2007,98(18):3513−3520. doi: 10.1016/j.biortech.2006.11.033
    [39]
    Farrell H J, Qi P X, Wickham E D, et al. Secondary structural studies of bovine caseins: Structure and temperature dependence of beta-casein phosphopeptide (1-25) as analyzed by circular dichroism, FTIR spectroscopy, and analytical ultracentrifugation[J]. Journal of Protein Chemistry,2002,21(5):307−321. doi: 10.1023/A:1019992900455
    [40]
    WANG Y, CUI F Z, ZHAI Y, et al. Investigations of the initial stage of recombinant human-like collagen mineralization[J]. Materials Science & Engineering C,2005,26(4):635−638.
    [41]
    CHEN D, LIU Z Y, HUANG W Q, et al. Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate[J]. Journal of Functional Foods,2013,5(2):689−697. doi: 10.1016/j.jff.2013.01.012
  • Related Articles

    [1]CHEN Jiangkui, LI Jing, YIN Chunyan, LIAN Qimeng, YE Jia. Effects of Four Kinds of Antioxidants on the Oxidative Stability of Xanthoceras sorbifolia Bunge Oil and Analysis of Its Fatty Acid Compositions[J]. Science and Technology of Food Industry, 2022, 43(12): 70-76. DOI: 10.13386/j.issn1002-0306.2021090033
    [2]LI Yuan-yuan, PAN Ling, ZHANG Yan. Effects of natural antioxidants on the oxidative stability and flavor characteristics of peanut oil[J]. Science and Technology of Food Industry, 2018, 39(5): 241-249.
    [3]WU Chen, CHEN Yi, MEI Jiang, ZHANG Zhi-hong, WANG Yu-ting. Studies of oxidative stability and the mechanisms of antioxidants in emulsions[J]. Science and Technology of Food Industry, 2015, (24): 380-384. DOI: 10.13386/j.issn1002-0306.2015.24.075
    [4]LEI Jing-ling, ZHAO Zhong-xing, WANG Chao-yang, ZHU Chang-jie, FENG Li-jin, LU Qiang-ji. Study on thermal stability and thermal inactivation kinetics of immobilized earthworm fibrinolytic enzyme[J]. Science and Technology of Food Industry, 2015, (21): 107-110. DOI: 10.13386/j.issn1002-0306.2015.21.013
    [5]MIAO Sen, WANG Lu, WANG Xiao-biao, QI Tian, ZHAO Zhi-wei, WU Yun. Research of the influence factors of thermal stability of Fresh Mare's Milk[J]. Science and Technology of Food Industry, 2015, (15): 213-218. DOI: 10.13386/j.issn1002-0306.2015.15.036
    [6]WANG Meng, DU Bing, CAO Wei. Research of activity and thermal stability of GOD in jujube and buckwheat honeys[J]. Science and Technology of Food Industry, 2015, (09): 83-86. DOI: 10.13386/j.issn1002-0306.2015.09.009
    [7]LIU Li-li, LI Si-dong, TANG Bing, YANG Xi-hong, LI Pu-wang, YANG Zi-ming. Study on the thermal stability of chitosan/gelatin composite films for food preservation[J]. Science and Technology of Food Industry, 2014, (08): 310-312. DOI: 10.13386/j.issn1002-0306.2014.08.062
    [8]Enzymatic characteristics and thermal stability model of polyphenol oxidase from potato[J]. Science and Technology of Food Industry, 2012, (19): 92-96. DOI: 10.13386/j.issn1002-0306.2012.19.035
    [9]Study on screening of efficient multiple antioxidants and stability of algal oil[J]. Science and Technology of Food Industry, 2012, (18): 318-321. DOI: 10.13386/j.issn1002-0306.2012.18.046
    [10]一品红红色素的提取及其稳定性研究[J]. Science and Technology of Food Industry, 1999, (06): 24-26. DOI: 10.13386/j.issn1002-0306.1999.06.068
  • Cited by

    Periodical cited type(11)

    1. 杨集镪,曾穗雯. 原子荧光光谱仪测定食品中汞含量的研究. 食品安全导刊. 2023(01): 111-113 .
    2. 程梦蓉,蒋国振,王婧,吴静,姬玲霞. 直接测汞仪测定大米粉中总汞含量的不确定度评定. 粮食与食品工业. 2023(03): 53-58 .
    3. 梁良,杜雨馨,杨子建. 基于支持向量机的多环芳烃光谱定量分析. 激光杂志. 2023(06): 220-224 .
    4. 金凯. 测汞仪直接测定水中汞的不确定度评定. 现代食品. 2023(23): 166-169 .
    5. 赵忠良. 原子荧光仪在地质矿物硒元素测定中的应用. 化工管理. 2022(18): 103-105 .
    6. 姚成虎,王滢,杨启鹏,洪成山,王岁岁,孙涓,毛小庆. 电感耦合等离子质谱法测定蟹黄中4种重金属含量的不确定度评定. 现代农业科技. 2022(18): 155-159+164 .
    7. 张阔,冯金奎,鄂立军. 照度测量不确定度研究. 中国特种设备安全. 2022(10): 22-25+41 .
    8. 王娟,华蓉,游金坤,邓雅元,孙达锋,杨璐敏,吴素蕊. 影响食用菌总汞含量测定准确度的关键技术探索. 中国食用菌. 2022(11): 60-66 .
    9. 贺璐,郑静. 电感耦合等离子体发射光谱法测定食品中钙、镁、磷、铁、锌、锰含量的不确定度评定. 化学分析计量. 2022(12): 83-87 .
    10. 李娟,辜芸,谭洪涛,周鸿. 婴幼儿食品中总汞含量检测方法的研究. 实验与检验医学. 2022(05): 524-525+546 .
    11. 程君,卢嘉砾,余松柏. 催化热解-冷原子吸收分光光度法测定石膏中总汞的不确定度评定. 中国水泥. 2022(S1): 16-21 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (271) PDF downloads (24) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return