Citation: | HUANG Wen, YU Kenan, LIAO Wanwen, et al. Optimization of Enzymatic Hydrolysis of Tilapia Scale Calcium Binding Peptides by Response Surface Methodology and Its Structural Characterization[J]. Science and Technology of Food Industry, 2021, 42(21): 190−196. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020099. |
[1] |
张红燕, 袁永明, 贺艳辉, 等. 世界罗非鱼生产和贸易现状分析[J]. 农业展望,2016,12(5):77−80. [ZHANG H Y, YUAN Y M, HE Y H, et al. Current situation on global tilapia production and trade[J]. Agricultural Outlook,2016,12(5):77−80. doi: 10.3969/j.issn.1673-3908.2016.05.018
|
[2] |
SUN N, WU H T, DU M, et al. Food protein-derived calcium chelating peptides: A review[J]. Trends in Food Science & Technology,2016,58:140−148.
|
[3] |
高敏, 汪建明, 甄灵慧, 等. 牛骨多肽螯合物的制备及结构表征[J]. 食品科学,2020,41(8):256−261. [GAO M, WANG J M, ZHEN L H, et al. Preparation and structural characterization of bovine bone polypeptide-calcium chelate[J]. Food Science,2020,41(8):256−261. doi: 10.7506/spkx1002-6630-20181217-183
|
[4] |
WALTERS M E, ESFANDI R, TSOPMO A. Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption[J]. Foods (Basel, Switzerland),2018,7(10):172.
|
[5] |
ZHAO N N, HU J, HOU T, et al. Effects of desalted duck egg white peptides and their products on calcium absorption in rats[J]. Journal of Functional Foods,2014,8:234−242. doi: 10.1016/j.jff.2014.03.022
|
[6] |
WU W M, HE L C, LIANG Y H, et al. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis[J]. Food Chemistry,2019,284:80−89. doi: 10.1016/j.foodchem.2019.01.103
|
[7] |
范轶欧, 刘爱玲, 何宇纳, 等. 中国成年居民营养素摄入状况的评价[J]. 营养学报,2012,34(1):15−19. [FAN Y O, LIU A L, HE Y N, et al. Assessment of nutrient adequacy of adult residents in China[J]. Journal of Nutrition,2012,34(1):15−19.
|
[8] |
HEANEY R P, WEAVER C M, FITZSIMMONS M L. Soybean phytate content: Effect on calcium absorption[J]. American Journal of Clinical Nutrition,1991,53(3):745−747. doi: 10.1093/ajcn/53.3.745
|
[9] |
曾勇, 李庆, 何睿, 等. 单一钙制剂与钙制剂联合维生素D干预治疗老年男性骨质疏松症疗效的随机对照临床研究[J]. 临床和实验医学杂志,2014,13(8):625−629. [ZENG Y, LI Q, HE R, et al. The comparison research of calcium and calcium joint vitamin D intervention in the treatment of osteoporosis in older men[J]. Journal of Clinical and Experimental Medicine,2014,13(8):625−629. doi: 10.3969/j.issn.1671-4695.2014.08.007
|
[10] |
杜春莹, 胡肇衡, 陈玲, 等. 阿仑膦酸钠对绝经后骨质疏松症患者骨代谢指标的影响[J]. 中国骨质疏松杂志,2014,20(1):22−25. [DU C Y, HU Z H, CHEN L, et al. Effect of alendronate sodium on bone metabolism in postmenopausal osteoporosis[J]. Chinese Journal of Osteoporosis,2014,20(1):22−25.
|
[11] |
许闫严, 张克良, 魏忠民, 等. 雌激素对去势骨质疏松症大鼠骨密度和骨代谢影响的实验研究[J]. 中国骨质疏松杂志,2018,24(6):776−780. [XU Y Y, ZHANG K L, WEI Z M, et al. Experimental study of the effect of estrogen on bone mineral density and bone metabolism in osteoporosis rats[J]. Chinese Journal of Osteoporosis,2018,24(6):776−780. doi: 10.3969/j.issn.1006-7108.2018.06.014
|
[12] |
李国新, 袁忠治, 温健, 等. 口服及静脉应用双磷酸盐治疗绝经后的骨质疏松临床研究[J]. 中国骨质疏松杂志,2013,19(9):988−990. [LI G X, YUAN Z Z, WEN J, et al. Clinical study of oral administration or intravenous injection of bisphosphonate for the treatment of postmenopausal osteoporosis[J]. Chinese Journal of Osteoporosis,2013,19(9):988−990. doi: 10.3969/j.issn.1006-7108.2013.09.025
|
[13] |
MACLAUGHLIN E J, SLEEPER R B, MCNATTY D, et al. Management of age-related osteoporosis and prevention of associated fractures[J]. Therapeutics and Clinical Risk Management,2006,2(3):281−295. doi: 10.2147/tcrm.2006.2.3.281
|
[14] |
OLGA R I K, ZDENKO K, PETR K, et al. Real-world management of women with postmenopausal osteoporosis treated with denosumab:A prospective observational study in the czech republic and slovakia[J]. Advances in Therapy,2018,35:1713−1728. doi: 10.1007/s12325-018-0779-9
|
[15] |
LI L N, ZENG Z, CAI G P. Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1[J]. Phytomedicine,2011,18(11):985−989. doi: 10.1016/j.phymed.2011.03.002
|
[16] |
LIU W Y, LU J, GAO F, et al. Preparation, characterization and identification of calcium-chelating Atlantic salmon (Salmo salar L.) ossein oligopeptides[J]. European Food Research and Technology,2015,241(6):851−860. doi: 10.1007/s00217-015-2510-2
|
[17] |
CHEN Q R, GUO L D, DU F, et al. The chelating peptide (GPAGPHGPPG) derived from Alaska pollock skin enhances calcium, zinc and iron transport in Caco-2 cells[J]. International Journal of Food Science & Technology,2017,52(5):1283−1290.
|
[18] |
PEREGO S, DEL F E, DE LUCA P, et al. Calcium bioaccessibility and uptake by human intestinal like cells following in vitro digestion of casein phosphopeptide-calcium aggregates[J]. Food & Function,2015,6(6):1796−1807.
|
[19] |
赵梓月, 王思远, 廖森泰, 等. 多肽螯合钙的研究进展[J]. 食品研究与开发,2020,41(5):200−206. [ZHAO Z Y, WANG S Y, LIAO S T, et al. Progress in research on peptide chelated calcium[J]. Food Research and Development,2020,41(5):200−206.
|
[20] |
AUudrey D, Janne P, Véronique F S, et al. Biological effect of hydrolyzed collagen on bone metabolism[J]. Taylor & Francis,2017,57(9):1922−1937.
|
[21] |
廖婉雯, 苗建银, 陈雨馨, 等. 罗非鱼骨胶原钙螯合肽的酶解制备[J]. 现代食品科技,2019,35(1):129−136. [LIAO W W, MIAO J Y, CHEN Y X, et al. Preparation of tilapia bone collagen calcium chelating peptides by enzymatic hydrolysis[J]. Modern Food Science and Technology,2019,35(1):129−136.
|
[22] |
LIAO W W, LIU S J, LIU X R, et al. The purification, identification and bioactivity study of a novel calcium-binding peptide from casein hydrolysate.[J]. Food & Function,2019,10(12):7724−7732.
|
[23] |
Meenal S P, Virendra K R, Aniruddha B P. Enzymatic hydrolysis of castor oil: Process intensification studies[J]. Biochemical Engineering Journal,2006,31(1):31−41. doi: 10.1016/j.bej.2006.05.017
|
[24] |
YAO Y M, WANG M Y, LIU Y, et al. Insights into the improvement of the enzymatic hydrolysis of bovine bone protein using lipase pretreatment[J]. Food Chemistry,2020,302:1251991−1251998.
|
[25] |
曹吉利, 张倩, 谭源, 等. 响应面法优化酶解羊乳酪蛋白制备抗氧化肽[J]. 食品工业,2018,39(3):107−111. [CAO J L, ZHANG Q, TAN Y, et al. Optimization of preparation of antioxidant peptides from goat milk casein by enzymatic hydrolysis[J]. The Food Industry,2018,39(3):107−111.
|
[26] |
王琴, 向斌, 薛飞, 等. 酶法去除米糠淀粉及其酶解动力学研究[J]. 农产品加工·综合刊,2009(12):68−70. [WANG Q, XIANG B, XUE F, et al. Study on enzymatic removal of rice bran starch and its enzymatic hydrolysis kinetics[J]. Farm Products Processing,2009(12):68−70. doi: 10.3969/j.issn.1671-9646-C.2009.12.038
|
[27] |
HONG H, FAN H B, CHALAMAIAH M, et al. Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives[J]. Food Chemistry,2019,301:125222. doi: 10.1016/j.foodchem.2019.125222
|
[28] |
Baha E A, Joaquín G, Assaad S, et al. Characteristics and functional properties of gelatin extracted from squid (Loligo vulgaris) skin[J]. LWT-Food Science and Technology,2016,65(1):924−931.
|
[29] |
SONG S Q, LI S S, FAN L, et al. A novel method for beef bone protein extraction by lipase-pretreatment and its application in the Maillard reaction[J]. Food Chemistry,2016,208(1):81−88.
|
[30] |
MANYAK A R, MURPHY C B, MARTELL A E. Metal chelate compounds of glycylglycine and glycylglycylglycine[J]. Archives of Biochemistry and Biophysics,1955,59(2):373−382. doi: 10.1016/0003-9861(55)90504-X
|
[31] |
CHAUD M V, IZUMI C, NAHAAL Z, et al. Iron derivatives from casein hydrolysates as a potential source in the treatment of iron deficiency[J]. Journal of Agricultural and Food Chemistry,2002,50(4):871. doi: 10.1021/jf0111312
|
[32] |
LIAO W W, CHEN H, JIN W, et al. Three newly isolated calcium-chelating peptides from tilapia bone collagen hydrolysate enhance calcium absorption activity in intestinal Caco-2 cells[J]. Journal of Agricultural and Food Chemistry,2020,68(7):2091−2098. doi: 10.1021/acs.jafc.9b07602
|
[33] |
刘晓容, 郭俊斌, 廖婉雯, 等. 酶法制备乳源钙螯合肽及其特性表征[J]. 食品研究与开发,2020,41(8):60−67. [LIU X R, GUO J B, LIAO W W, et al. Preparation and characterization of milk-derived calcium chelating peptide by enzymatic method[J]. Food Research and Development,2020,41(8):60−67. doi: 10.12161/j.issn.1005-6521.2020.08.010
|
[34] |
HUANG G R, REN Z Y, JIAN J X. Separation of iron-binding peptides from shrimp processing by-products hydrolysates[J]. Food and Bioprocess Technology,2011,4(8):1527−1532. doi: 10.1007/s11947-010-0416-3
|
[35] |
SUN N, JIN Z Q, LI D M, et al. An exploration of the calcium-binding mode of egg white peptide, Asp-His-Thr-Lys-Glu, and in vitro calcium absorption studies of peptide-calcium complex[J]. Journal of Agricultural and Food Chemistry,2017,65(44):9782. doi: 10.1021/acs.jafc.7b03705
|
[36] |
Peng Z, Hou H, Zhang K, et al. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats[J]. Food Chemistry,2017,221(15):373−378.
|
[37] |
Miller G D, Jarvis J K, McBean L D. The importance of meeting calcium needs with foods[J]. Journal of the American College of Nutrition,2001,20(2 Suppl):168S−185S.
|
[38] |
El H H, Fakharedine N, Ait B G, et al. Treatment of olive mill waste-water by aerobic biodegradation: An analytical study using gel permeation chromatography, ultraviolet-visible and Fourier transform infrared spectroscopy[J]. Bioresource Technology,2007,98(18):3513−3520. doi: 10.1016/j.biortech.2006.11.033
|
[39] |
Farrell H J, Qi P X, Wickham E D, et al. Secondary structural studies of bovine caseins: Structure and temperature dependence of beta-casein phosphopeptide (1-25) as analyzed by circular dichroism, FTIR spectroscopy, and analytical ultracentrifugation[J]. Journal of Protein Chemistry,2002,21(5):307−321. doi: 10.1023/A:1019992900455
|
[40] |
WANG Y, CUI F Z, ZHAI Y, et al. Investigations of the initial stage of recombinant human-like collagen mineralization[J]. Materials Science & Engineering C,2005,26(4):635−638.
|
[41] |
CHEN D, LIU Z Y, HUANG W Q, et al. Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate[J]. Journal of Functional Foods,2013,5(2):689−697. doi: 10.1016/j.jff.2013.01.012
|