SHI Gangpeng, QUE Feng, GAO Tianqi, et al. Effects of Different Quick-freezing Methods on Protein Properties of Largemouth Bass (Lateolabrax japonicus)[J]. Science and Technology of Food Industry, 2021, 42(20): 309−319. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020051.
Citation: SHI Gangpeng, QUE Feng, GAO Tianqi, et al. Effects of Different Quick-freezing Methods on Protein Properties of Largemouth Bass (Lateolabrax japonicus)[J]. Science and Technology of Food Industry, 2021, 42(20): 309−319. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020051.

Effects of Different Quick-freezing Methods on Protein Properties of Largemouth Bass (Lateolabrax japonicus)

More Information
  • Received Date: February 06, 2021
  • Available Online: August 12, 2021
  • In this paper, largemouth bass was used as raw material to study the effects of different cooling rates (liquid nitrogen quick freezing (1.81 ℃), freezing liquid quick freezing (0.15 ℃), flat plate quick freezing (0.14 ℃)) in freezing storage (0, 1, 2, 4, 12, 24 weeks), the influence of the physical and chemical properties of largemouth bass protein, by measuring the salt-soluble protein, sulfhydryl group, carbonyl group, Ca2+-ATPase activity content, surface hydrophobicity, endogenous fluorescence spectrum and protein composition changes in the fish meat, and using double factor variance and correlation analysis study quick-freezing method and storage time to investigate the degeneration of fish protein after freezing. The results showed that with the passage of frozen storage time, the value of salt-soluble protein showed a downward trend: The plate group and liquid nitrogen group had the lowest and the highest at the end of the frozen storage, respectively; the activity values of sulfhydryl and Ca2+-ATPase both increased first and then decreased. The endogenous fluorescence intensity of fibrin increased, resulting in a blue shift phenomenon, and the value of myofibrillar protein carbonyl and surface hydrophobicity increased significantly (P<0.05). The results of SDS-PAGE electrophoresis showed that myofibrillar protein was degraded during the freezing period, while the liquid nitrogen group had a faster cooling rate and a slower degree of protein degradation, while the plate group was the opposite. The volume of ice crystals formed by quick freezing of liquid nitrogen was similar to the distribution of water in the raw material, which was conducive to storage. Compared with liquid nitrogen quick freezing, the time for the formation of the maximum ice crystal zone in the quick freezing of liquid nitrogen was longer than that of liquid nitrogen quick freezing and shorter than that of flat quick freezing, and there was not much difference between the two. The correlation analysis between the two-factor variance and the indicators showed that the quick freezing method had a significant effect on the active sulfhydryl group and the maximum fluorescence intensity of myofibril protein (P<0.05). The freezing time was the main factor affecting the protein of the sea bass. The oxidative modification of amino acid side chain groups in myofibrillar protein was the main factor causing the degradation or aggregation of protein.
  • [1]
    农业部渔业渔政管理局. 2020中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 1−158.

    Fishery and Fishery Administra-tion Bureau of the Ministry of Agriculture. 2020 China fishery statistics yearbook[M]. Beijing: China Agriculture Press, 2020: 1−158.
    [2]
    吴燕燕, 李冰, 朱小静, 等. 养殖海水和淡水鲈鱼的营养组成分析比较[J]. 食品工业科技,2016,37(20):348−352. [Wu Yanyan, Li Bing, Zhu Xiaojing, et al. Analysis and comparison of nutritional composition of cultured seawater and freshwater sea bass[J]. Food Industry Science and Technology,2016,37(20):348−352.
    [3]
    邓锦锋, 王安利, 周初霞, 等. 鲈鱼的营养研究进展[J]. 饲料工业,2006,27(10):59−60. [Deng Jinfeng, Wang Anli, Zhou Chuxia, et al. Nutritional research progress of sea bass[J]. Feed Industry,2006,27(10):59−60. doi: 10.3969/j.issn.1001-991X.2006.10.017
    [4]
    郭园园, 孔保华. 冷冻贮藏引起的鱼肉蛋白质变性及物理化学特性的变化[J]. 食品科学,2011,32(7):335−340. [Guo Yuanyuan, Kong Baohua. Fish protein denaturation and changes in physical and chemical properties caused by frozen storage[J]. Food Science,2011,32(7):335−340.
    [5]
    王联珠, 谭乐义, 陈远惠, 等. 我国冷冻水产品质量状况及发展前景[J]. 海洋水产研究,2002,23(2):83−88. [Wang Lianzhu, Tan Leyi, Chen Yuanhui, et al. The quality status and development prospects of frozen aquatic products in my country[J]. Marine Fisheries Research,2002,23(2):83−88.
    [6]
    Benjakul S, Sutthipan N. Muscle changes in hard and soft shell crabs during frozen storage[J]. LWT-Food Science and Technology,2009,42(3):723−729. doi: 10.1016/j.lwt.2008.10.003
    [7]
    鲁裙. 液氮深冷速冻对带鱼和银鳍品质及其肌肉组织的影响[D]. 杭州: 浙江大学, 2015.

    Lu Qun. The effect of liquid nitro-gen deep freezing and quick freezing on the quality and muscle tissue of hairtail and silver fin[D]. Hangzhou: Zhejiang University, 2015.
    [8]
    Hamre K, Lie Ø, Sandnes K. Development of lipid oxidation and flesh colour in frozen stored fillets of Norwegian spring-spawning herring (Clupea harengus L.). Effects of treatment with ascorbic acid[J]. Food Chemistry,2003,82(3):447−453. doi: 10.1016/S0308-8146(03)00070-0
    [9]
    Sun Q, Sun F, Xia X, et al. The comparison of ultrasound-assisted immersion freezing, air freezing and immersion freezing on the muscle quality and physicochemical properties of common carp (Cyprinus carpio) during freezing storage[J]. Ultrasonics Sono-chemistry,2019,51:281−291. doi: 10.1016/j.ultsonch.2018.10.006
    [10]
    Careche M, Tejada M. Hake natural actomyosin interaction with free fatty acids during frozen storage[J]. Journal of the Science of Food and Agriculture,1994,64(4):501−507. doi: 10.1002/jsfa.2740640417
    [11]
    Yuan C, Yu K, Chen S, et al. Effect of freezing rate on the denaturation of myofibrillar protein in fish muscle[J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers,2006,23(3):329−334.
    [12]
    Liang D, Lin F, Yang G, et al. Advantages of immersion freezing for quality preservation of litchi fruit during frozen storage[J]. LWT-Food Science and Technology,2015,60(2):948−956. doi: 10.1016/j.lwt.2014.10.034
    [13]
    Yang F, Jing D, Diao Y, et al. Effect of immersion freezing with edible solution on freezing efficiency and physical properties of obscure pufferfish (Takifugu obscurus) fillets[J]. LWT,2020,118:108762. doi: 10.1016/j.lwt.2019.108762
    [14]
    任丽娜. 白鲢鱼肉肌原纤维蛋白冷冻变性的研究[D]. 无锡: 江南大学, 2014.

    Ren Lina. Study on frozen denaturation of silver carp myofibrillar protein[D]. Wuxi: Jiangnan University, 2014.
    [15]
    董开成. 不同低温预处理对小黄鱼贮藏过程中品质的影响[D]. 杭州: 浙江大学, 2015.

    Dong Kaicheng. The effect of diffe-rent low-temperature pretreatments on the quality of small yellow croaker during storage[D]. Hangzhou: Zhejiang University, 2015.
    [16]
    石钢鹏, 周俊鹏, 章蔚, 等. 超高压与热烫预处理对克氏原螯虾肉冻藏品质的影响[J]. 食品工业科技,2020,41(15):288−296, 322. [Shi Gangpeng, Zhou Junpeng, Zhang Wei, et al. Effects of ultra-high pressure and blanching pretreatment on the quality of frozen Procambarus clarkii[J]. Food Industry Science and Technology,2020,41(15):288−296, 322.
    [17]
    李清正, 张顺亮, 罗永康, 等. 温度对复合肌原纤维蛋白结构及其表面疏水性的影响[J]. 肉类研究,2017,31(2):6−10. [Li Qingzheng, Zhang Shunliang, Luo Yongkang, et al. The effect of temperature on the structure of composite myofibril protein and its surface hydrophobicity[J]. Meat Research,2017,31(2):6−10. doi: 10.7506/rlyj1001-8123-201702002
    [18]
    Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970,227(5259):680−685. doi: 10.1038/227680a0
    [19]
    朱姝冉, 张淼, 周光宏, 等. 利用光谱技术分析加热温度对肌红蛋白结构的影响[J]. 食品工业科技,2018,39(24):35−39. [Zhu Shuran, Zhang Miao, Zhou Guanghong, et al. Analysis of the influence of heating temperature on the structure of myoglobin using spectroscopy[J]. Food Industry Science and Technology,2018,39(24):35−39.
    [20]
    向迎春, 黄佳奇, 杨志坚, 等. 冻结方式对凡纳滨对虾贮藏中组织冰晶及品质的影响[J]. 食品工业科技,2018,39(5):280−286. [Xiang Yingchun, Huang Jiaqi, Yang Zhijian, et al. Effects of freezing methods on ice crystals and quality of Litopenaeus vannamei in storage[J]. Science and Technology of Food Industry,2018,39(5):280−286.
    [21]
    Kaale L D, Eikevik T M, Bardal T, et al. The effect of cooling rates on the ice crystal growth in air-packed salmon fillets during superchilling and superchilled storage[J]. International Journal of Refrigeration,2013,36(1):110−119. doi: 10.1016/j.ijrefrig.2012.09.006
    [22]
    丁玉庭, 陈艳, 邹礼根, 等. 猪PSE肉与正常肉肌原纤维蛋白质抽提率和持水性的比较研究[J]. 中国食品学报,2004,.4(2):62−65. [Ding Yuting, Chen Yan, Zou Ligen, et al. Comparative study on protein extraction rate and water holding capacity of pig PSE meat and normal meat myofibril[J]. Chinese Journal of Food Science,2004,.4(2):62−65. doi: 10.3969/j.issn.1009-7848.2004.02.013
    [23]
    黄莉, 吕鸿皓, 董福家, 等. 骨蛋白水解物和魔芋复配对冷冻鱼糜抗冻效果的研究[J]. 食品工业科技,2014,35(22):139−144. [Huang Li, Lv Honghao, Dong Fujia, et al. Study on the antifreeze effect of bone protein hydrolysate and konjac on frozen surimi[J]. Food Industry Science and Technology,2014,35(22):139−144.
    [24]
    Gao W, Huang Y, Zeng X, et al. Effect of soluble soybean polysaccharides on freeze-denaturation and structure of myofibrillar protein of bighead carp surimi with liquid nitrogen freezing[J]. International Journal of Biological Macromolecules,2019,135:839−844. doi: 10.1016/j.ijbiomac.2019.05.186
    [25]
    Makri M. Full length research paper biochemical and textural properties of frozen stored (−22 ℃) gilthead seabream (Sparus aurata) fillets[J]. African Journal of Biotechnology,2009,8(7):1287−1299.
    [26]
    杨利艳, 曹文红, 章超桦, 等. 冷冻方式对凡纳滨对虾品质特性的影响[J]. 食品与机械,2011(5):156−159, 199. [Yang Liyan, Cao Wenhong, Zhang Chaohua, et al. Effects of freezing methods on the quality characteristics of Litopenaeus vannamei[J]. Food and Machinery,2011(5):156−159, 199. doi: 10.3969/j.issn.1003-5788.2011.05.041
    [27]
    Buttkus H. The sulfhydryl content of rabbit and trout myosins in relation to protein stability[J]. Canadian Journal of Biochemistry,1971,49(1):97−107. doi: 10.1139/o71-015
    [28]
    Levine R L, Wehr N, Williams J A, et al. Determination of carbonyl groups in oxidized proteins[J]. Methods in Molecular Biology,2000,99(1):15.
    [29]
    朱卫星, 王远亮, 李宗军. 蛋白质氧化机制及其评价技术研究进展[J]. 食品工业科技,2011,32(11):483−486. [Zhu Weixing, Wang Yuanliang, Li Zongjun. Progress in protein oxidation mechanism and its evaluation technology[J]. Science and Technology of Food Industry,2011,32(11):483−486.
    [30]
    Estévez M. Protein carbonyls in meat systems: A review[J]. Meat Science,2011,89(3):259−279. doi: 10.1016/j.meatsci.2011.04.025
    [31]
    Sitte N, Merker K, Von Zglinicki T, et al. Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts[J]. Free Radical Biology and Medicine,2000,28(5):701−708.
    [32]
    文镜, 张春华, 董雨, 等. 蛋白质羰基含量与蛋白质氧化损伤[J]. 食品科学,2003,24(10):153−157. [Wen Jing, Zhang Chunhua, Dong Yu, et al. Protein carbonyl content and protein oxidative damage[J]. Food Science,2003,24(10):153−157. doi: 10.3321/j.issn:1002-6630.2003.10.039
    [33]
    Estevez M, Ventanas S, Heinonen M, et al. Protein carbonylation and water-holding capacity of pork subjected to frozen storage: Effect of muscle type, premincing, and packaging[J]. Journal of Agricultural & Food Chemistry,2011,59(10):5435−5443.
    [34]
    卢涵. 鳙鱼肉低温贮藏过程中蛋白氧化、组织蛋白酶活性与品质变化规律的研究[D]. 北京: 中国农业大学.

    Lu Han. Study on protein oxidation, cathepsin activity and quality changes during low-temperature storage of bighead carp meat[D]. Beijing: China Agricultural University.
    [35]
    蒋祎人, 李涛, 刘友明, 等. 丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响[J]. 食品科学,2020,41(6):1−7. [Jiang Yiren, Li Tao, Liu Youming, et al. The effect of malondialdehyde oxidative modification on the structure and properties of silver carp myofibril protein[J]. Food Science,2020,41(6):1−7. doi: 10.7506/spkx1002-6630-20190411-143
    [36]
    赵亚, 石启龙, 曹淑敏. 南美白对虾贮藏期间Ca2+-ATPase活力变化规律与机制[J]. 食品科学,2018,39(5):258−264. [Zhao Ya, Shi Qilong, Cao Shumin. The law and mechanism of Ca2+-ATPase activity change of Penaeus vannamei during storage[J]. Food Science,2018,39(5):258−264. doi: 10.7506/spkx1002-6630-201805039
    [37]
    鲁珺. 液氮深冷速冻对带鱼和银鲳品质及其肌肉组织的影响[D]. 杭州: 浙江大学, 2015.

    Lu Jun. The effect of liquid nitro-gen deep freezing and quick freezing on the quality and muscle tissue of hairtail and silver pomfret[D]. Hangzhou: Zhejiang University, 2015.
    [38]
    曾名勇, 黄海, 李八方. 鳙肌肉蛋白质生化特性在冻藏过程中的变化[J]. 水产学报,2003,27(5):480−485. [Zeng Mingyong, Huang Hai, Li Bafang. Changes in the biochemical properties of bighead carp muscle protein during freezing storage[J]. Journal of Fisheries,2003,27(5):480−485.
    [39]
    闫春子, 夏文水, 许艳顺. 超高压对草鱼肌原纤维蛋白结构的影响[J]. 食品与生物技术学报,2018,37(4):424−428. [Yan Chunzi, Xia Wenshui, Xu Yanshun. The effect of ultra-high pressure on the structure of grass carp myofibril protein[J]. Journal of Food and Biotechnology,2018,37(4):424−428. doi: 10.3969/j.issn.1673-1689.2018.04.014
    [40]
    Riebroy S, Benjakul S, Visessanguan W, et al. Acid-induced gelation of natural actomyosin from Atlantic cod (Gadus morhua) and burbot (Lota lota)[J]. Food Hydrocolloids,2009,23(1):26−39. doi: 10.1016/j.foodhyd.2007.11.010
    [41]
    Zhou A, Benjakul S, Pan K, et al. Cryoprotective effects of trehalose and sodium lactate on tilapia (Sarotherodon nilotica) surimi during frozen storage[J]. Food Chemistry,2006,96(1):96−103. doi: 10.1016/j.foodchem.2005.02.013
    [42]
    Leelapongwattana K, Benjakul S, Visessanguan W, et al. Physicochemical and biochemical changes during frozen storage of minced flesh of lizardfish (Saurida micropectoralis)[J]. Food Chemistry,2005,90(1−2):141−150. doi: 10.1016/j.foodchem.2004.03.038
    [43]
    Wang K, Sun D W, Pu H, et al. Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: A review[J]. Trends in Food Science & Technology,2017,67:207−219.
    [44]
    袁春红, 陈舜胜, 程裕东, 等. 冻结条件与冻藏温度对鲤鱼肉肌原纤维蛋白冷冻变性的影响[J]. 上海水产大学学报,2001,10(1):44−48. [Yuan Chunhong, Chen shunsheng, Cheng Yudong, et al. The effects of freezing conditions and freezing storage temperature on the freezing denaturation of carp myofibril protein[J]. Journal of Shanghai Fisheries University,2001,10(1):44−48.
    [45]
    郭园园, 孔保华, 夏秀芳, 等. 冷冻-解冻循环对鲤鱼肉物理化学特性的影响[J]. 食品科学,2011,32(13):125−130. [Guo Yuanyuan, Kong Baohua, Xia Fangfang, et al. Effects of freezing thawing cycle on physicochemical properties of carp meat[J]. Food Science,2011,32(13):125−130.
    [46]
    Shi L, Beamer S K, Yin T, et al. Mass balance for isoelectric solubilization/precipitation of carp, chicken, menhaden, and krill[J]. LWT-Food Science and Technology,2017,81:26−34. doi: 10.1016/j.lwt.2017.03.029
    [47]
    Maruyama N. Comparison of reactivity of transglutaminase to various fish actomyosins[J]. Fish Sci,1995,61:495−500. doi: 10.2331/fishsci.61.495
    [48]
    Lu H, Zhang L, Li Q, et al. Comparison of gel properties and biochemical characteristics of myofibrillar protein from bighead carp (Aristichthys nobilis) affected by frozen storage and a hydroxyl radical-generation oxidizing system[J]. Food Chemistry,2017,223(May 15):96−103.
    [49]
    Decker E A, Xiong Y L, Calvert J T, et al. Chemical, physical, and functional properties of oxidized turkey white muscle myofibrillar protein[J]. J Agric Food Chem,1993,41(2):186−189. doi: 10.1021/jf00026a007
    [50]
    Shi L, Yin T, Xiong G, et al. Microstructure and physicochemical properties: Effect of pre-chilling and storage time on the quality of channel catfish during frozen storage[J]. LWT,2020:109606.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (328) PDF downloads (33) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return