Citation: | HUANG Jiahuan, ZHANG Mingru, LUO Luxiang, et al. Research Progress on the Preparation and Anti-inflammatory Mechanism of Oligosaccharides[J]. Science and Technology of Food Industry, 2022, 43(4): 413−419. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010260. |
[1] |
刘丹华, 张瑞莉, 田旭, 等. 黄芪多糖在LPS诱导的DF-1细胞炎症反应中的抗炎作用及其调节机制[J]. 中国兽医学报,2021,41(1):143−149. [LIU D H, ZHANG R L, TIAN X, et al. Anti-inflammatory effect of Astragalus polysaccharides on LPS-induced DF-1 cell inflammation and its regulatory mechanism[J]. Chinese Journal of Veterinary Science,2021,41(1):143−149.
|
[2] |
李芬芬. 大粒车前子多糖抗炎与缓解壬基酚毒性作用及其机制研究[D]. 南昌: 南昌大学, 2020.
LI F F. Study on protective effects of polysaccharide from seeds of Plantago asiatica L. against inflammation and nonylphenol exposure[D]. Nanchang: Nanchang University, 2020.
|
[3] |
苗雨露, 张雯霞, 王玉娥, 等. 清热解毒类中药抗炎机制研究进展[J]. 中国实验方剂学杂志,2018,24(9):228−234. [MIAO Y L, ZHANG W X, WANG Y E, et al. Anti-inflammatory mechanism of antipyretic and detoxifying traditional Chinese medicine[J]. Chinese Journal of Experimental Traditional Medical Formulae,2018,24(9):228−234.
|
[4] |
苏卫卫, 刘苹. 炎症性疾病治疗方面的研究进展[J]. 西安文理学院学报(自然科学版),2021,24(1):69−79. [SU W W, LIU P. Research progress in the treatment of inflammatory diseases[J]. Journal of Xi’an University (Natural Science Edition),2021,24(1):69−79.
|
[5] |
AMBOTHIK, PRASAD N R, BALUPILLAI A. Ferulic acid inhibits UVB-radiation induced photocarcinogenesis through modulating inflammatory and apoptotic signaling in Swiss albino mice[J]. Food and Chemical Toxicology,2015,82:72−78. doi: 10.1016/j.fct.2015.04.031
|
[6] |
YEH S L, WU T C, CHAN S T, et al. Fructo-oligosaccharide attenuates the production of pro-inflammatory cytokines and the activation of JNK/Jun pathway in the lungs of D-galactose-treated Balb/cJ mice[J]. European Journal of Nutrition,2014,53(2):449−456. doi: 10.1007/s00394-013-0545-3
|
[7] |
WANG W, LIU P, HAO C, et al. Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-κB pathways[J]. Scientific Reports,2017,7:44252. doi: 10.1038/srep44252
|
[8] |
HYUNG J H, AHN C B, KIM B, et al. Involvement of Nrf2-mediated heme oxygenase-1 expression in anti-inflammatory action of chitosan oligosaccharides through MAPK activation in murine macrophages[J]. European Journal of Pharmacology,2016,793:43−48. doi: 10.1016/j.ejphar.2016.11.002
|
[9] |
LIU H T, HUANG P, MA P, et al. Chitosan oligosaccharides suppress LPS-induced IL-8 expression in human umbilical vein endothelial cells through blockade of p38 and Akt protein kinases[J]. Acta Pharmacologica Sinica,2011,32(4):478−486. doi: 10.1038/aps.2011.10
|
[10] |
YOUSEF M, PICHYANGKURA R, SOODVILAI S, et al. Chitosan oligosaccharide as potential therapy of inflammatory bowel disease: Therapeutic efficacy and possible mechanisms of action[J]. Pharmacological Research,2012,66(1):66−79. doi: 10.1016/j.phrs.2012.03.013
|
[11] |
FERENCZI S, SZEGI K, WINKLER Z, et al. Oligomannan prebiotic attenuates immunological, clinical and behavioral symptoms in mouse model of inflammatory bowel disease[J]. Scientific Reports,2016,6:34132. doi: 10.1038/srep34132
|
[12] |
HUANG B, XIAO D, TAN B, et al. Chitosan oligosaccharide teduces intestinal inflammation that involves calcium-sensing receptor (CaSR) activation in LPS challenged-piglets[J]. Journal of Agricultural and Food Chemistry,2016,64(1):245−252. doi: 10.1021/acs.jafc.5b05195
|
[13] |
LIU R, LI Y, ZHANG B. The effects of konjac oligosaccharide on TNBS-induced colitis in rats[J]. International Immunopharmacology,2016,40:385−391. doi: 10.1016/j.intimp.2016.08.040
|
[14] |
CHU H, TAO X, SUN Z, et al. Galactooligosaccharides protects against DSS-induced murine colitis through regulating intestinal flora and inhibiting NF-κB pathway[J]. Life Sciences,2020,242:117220. doi: 10.1016/j.lfs.2019.117220
|
[15] |
MATSUMOTO K, ICHIMURA M, TSUNEYAMA K, et al. Fructo-oligosaccharides and intestinal barrier function in a methionine-choline-deficient mouse model of nonalcoholic steatohepatitis[J]. PLoS One,2017,12(6):e0175406. doi: 10.1371/journal.pone.0175406
|
[16] |
LIM E, LIM J Y, KIM E, et al. Xylobiose, an alternative sweetener, ameliorates diabetes-related metabolic changes by regulating hepatic lipogenesis and miR-122a/33a in db/db mice[J]. Nutrients,2016,8(12):791−808. doi: 10.3390/nu8120791
|
[17] |
ZHOU R, SHI X Y, BI D C, et al. Alginate-derived oligosaccharide inhibits neuroinflammation and promotes microglial phagocytosis of β-amyloid[J]. Marine Drugs,2015,13(9):5828−5846. doi: 10.3390/md13095828
|
[18] |
王丹波. 果胶低聚糖的酶法制备及应用研究[D]. 杭州: 浙江工业大学, 2006.
WANG D B. Enzymatically preparation of biologically active oligogalacturonides and their biologically activity research[D]. Hangzhou: Zhejiang University of Technology, 2006.
|
[19] |
TAN H, YANG G, CHEN W, et al. Identification and characterization of thermostable endo-polygalacturonase II B from Aspergillus luchuensis[J]. Journal of Food Biochemistry,2020,44(3):e13133.
|
[20] |
WANG Z, XU B, LUO H, et al. Production pectin oligosaccharides using Humicola insolens Y1-derived unusual pectate lyase[J]. Journal of Bioscience and Bioengineering,2020,129(1):16−22. doi: 10.1016/j.jbiosc.2019.07.005
|
[21] |
杨绍青, 刘学强, 刘瑜, 等. 酶法制备几种功能性低聚糖的研究进展[J]. 生物产业技术,2019,7(4):16−25. [YANG S Q, LIU X Q, LIU Y, et al. Advance in enzymatic production of several functional oligosaccharides[J]. Biotechnology & Business,2019,7(4):16−25.
|
[22] |
NORDBERG K E, SCHMITZ E, LINARES-PASTÉN J A, et al. Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties[J]. Applied Microbiology and Biotechnology,2018,102(21):9081−9088. doi: 10.1007/s00253-018-9343-4
|
[23] |
ZHANG W, LEI F, LI P, et al. Co-catalysis of magnesium chloride and ferrous chloride for xylo-oligosaccharides and glucose production from sugarcane bagasse[J]. Bioresource Technology,2019,291:121839. doi: 10.1016/j.biortech.2019.121839
|
[24] |
NIETO-DOMÍNGUEZ M, EUGENIO L I, YORK-DURÁN M J, et al. Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase[J]. Food Chemistry,2017,232(1):105−113.
|
[25] |
LIU X, LIU Y, JIANG Z, et al. Biochemical characterization of a novel xylanase from Paenibacillus barengoltzii and its application in xylooligosaccharides production from corncobs[J]. Food Chemistry,2018,264(30):310−318.
|
[26] |
BALI V, PANESAR P S, BERA M B, et al. Fructo-oligosaccharides: Production, purification and potential applications[J]. Critical Reviews in Food Science and Nutrition,2015,55(11):1475−1490. doi: 10.1080/10408398.2012.694084
|
[27] |
WANG D, LI F L, WANG S A. A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast[J]. Carbohydrate Polymers,2016,151:1220−1226. doi: 10.1016/j.carbpol.2016.06.059
|
[28] |
OLIVEIRA R L, SILVA M F, CONVERTI A, et al. Biochemical characterization and kinetic/thermodynamic study of Aspergillus tamarii URM4634 β-fructofuranosidase with transfructosylating activity[J]. Biotechnology Progress,2019,35(6):e2879.
|
[29] |
VEGA R, ZÚNIGA-HANSEN M E. Enzymatic synthesis of fructooligosaccharides with high 1-kestose concentrations using response surface methodology[J]. Bioresource Technology,2011,102(22):10180−10186. doi: 10.1016/j.biortech.2011.09.025
|
[30] |
LIU Z, NING C, YUAN M, et al. High-level expression of a thermophilic and acidophilic β-mannanase from Aspergillus kawachii IFO 4308 with significant potential in mannooligosaccharide preparation[J]. Bioresource Technology,2020,295:122257. doi: 10.1016/j.biortech.2019.122257
|
[31] |
YANG J K, CHEN Q C, ZHOU B, et al. Manno-oligosaccharide preparation by the hydrolysis of konjac flour with a thermostable endo-mannanase from Talaromyces cellulolyticus[J]. Journal Applied Microbiology,2019,127(2):520−532. doi: 10.1111/jam.14327
|
[32] |
GOFFIN D, DELZENNE N, BLECKER C, et al. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics[J]. Critical Reviews in Food Science and Nutrition,2011,51(5):394−409. doi: 10.1080/10408391003628955
|
[33] |
姚明静, 赵祥颖, 张立鹤, 等. 甘薯渣残留淀粉制备低聚异麦芽糖工艺的研究[J]. 食品科技,2019,44(8):254−260. [YAO M J, ZHAO X Y, ZHANG L H, et al. Study on production of isomaltooligosachcharides by residual starch of sweet potato residue[J]. Food Science and Technology,2019,44(8):254−260.
|
[34] |
CHEN P, XU R, WANG J, et al. Starch biotransformation into isomaltooligosaccharides using thermostable alpha-glucosidase from Geobacillus stearothermophilus[J]. PeerJ,2018,6:e5086. doi: 10.7717/peerj.5086
|
[35] |
HUANG S X, HOU D Z, QI P X, et al. Enzymatic synthesis of non-digestible oligosaccharide catalyzed by dextransucrase and dextranase from maltose acceptor reaction[J]. Biochemical and Biophysical Research Communications,2020,523(3):651−657. doi: 10.1016/j.bbrc.2019.12.010
|
[36] |
ZHU B, NI F, XIONG Q, et al. Marine oligosaccharides originated from seaweeds: Source, preparation, structure, physiological activity and applications[J]. Critical Reviews in Food Science and Nutrition,2020,23(1):1−15.
|
[37] |
WANG Z P, CAO M, LI B, et al. Cloning, secretory expression and characterization of a unique pH-stable and cold-adapted alginate lyase[J]. Marine Drugs,2020,18(4):189−201. doi: 10.3390/md18040189
|
[38] |
ZHU B W, HUANG L S, TAN H D, et al. Characterization of a new endo-type polyM-specific alginate lyase from Pseudomonas sp[J]. Biotechnol Lett,2015,37(2):409−415. doi: 10.1007/s10529-014-1685-0
|
[39] |
PARK S H, LEE C R, HONG S K. Implications of agar and agarase in industrial applications of sustainable marine biomass[J]. Applied Microbiology and Biotechnology,2020,104(7):2815−2832. doi: 10.1007/s00253-020-10412-6
|
[40] |
LEE C H, LEE C R, HONG S K. Biochemical characterization of a novel cold-adapted agarotetraose-producing α-agarase, AgaWS5, from Catenovulum sediminis WS1-A[J]. Applied Microbiology and Biotechnology,2019,103(20):8403−8411. doi: 10.1007/s00253-019-10056-1
|
[41] |
CHEN X, LIN H, JIN M, et al. Characterization of a novel alkaline β-agarase and its hydrolysates of agar[J]. Food Chemistry,2019,295:311−319. doi: 10.1016/j.foodchem.2019.05.132
|
[42] |
付文佳. 酶法合成低聚半乳糖的研究[D]. 大连: 大连工业大学, 2016.
FU W J. Study on synthesis of galactooligosaccharide by lactase[D]. Dalian: Dalian Polytechnic University, 2016.
|
[43] |
YOU S, ZHANG J, YIN Q, et al. Development of a novel integrated process for co-production of β-galactosidase and ethanol using lactose as substrate[J]. Bioresource Technology,2017,230:15−23. doi: 10.1016/j.biortech.2017.01.019
|
[44] |
DAI Z, LYU W, XIANG X, et al. Immunomodulatory effects of enzymatic-synthesized α-galactooligosaccharides and evaluation of the structure-activity relationship[J]. Journal of Agricultural Food Chemistry,2018,66(34):9070−9079. doi: 10.1021/acs.jafc.8b01939
|
[45] |
FISCHER C, KLEINSCHMIDT T. Combination of two β-galactosidases during the synthesis of galactooligosaccharides may enhance yield and structural diversity[J]. Biochemical and Biophysical Research Communications,2018,506(1):211−215. doi: 10.1016/j.bbrc.2018.10.091
|
[46] |
YIN H, DIJKHUIZEN L, VAN L S S. Synthesis of galacto-oligosaccharides derived from lactulose by wild-type and mutant β-galactosidase enzymes from Bacillus circulans ATCC 31382[J]. Carbohydrate Research,2018,465:58−65. doi: 10.1016/j.carres.2018.06.009
|
[47] |
FISCHER C, KLEINSCHMIDT T. Effect of glucose depletion during the synthesis of galactooligosaccharides using a trienzymatic system[J]. Enzyme and Microbial Technology,2019,121:45−50. doi: 10.1016/j.enzmictec.2018.10.009
|
[48] |
GAO X, WU J, WU D. Rational design of the beta-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production[J]. Food Chemistry,2019,286:362−367. doi: 10.1016/j.foodchem.2019.01.212
|
[49] |
LODHI G, KIM Y S, HWANG J W, et al. Chitooligosaccharide and its derivatives: Preparation and biological applications[J]. BioMed Research International,2014,2014:654913.
|
[50] |
SINGH D P, SINGH S, BIJALWAN V, et al. Co-supplementation of isomalto-oligosaccharides potentiates metabolic health benefits of polyphenol-rich cranberry extract in high fat diet-fed mice via enhanced gut butyrate production[J]. European Journal of Nutrition,2018,57(8):2897−2911. doi: 10.1007/s00394-017-1561-5
|
[51] |
KANG L X, CHEN X M, FU L, et al. Recombinant expression of chitosanase from Bacillus subtilis HD145 in Pichia pastoris[J]. Carbohydrate Research,2012,352:37−43. doi: 10.1016/j.carres.2012.01.025
|
[52] |
LUO S, QIN Z, CHEN Q, et al. High level production of a Bacillus amlyoliquefaciens chitosanase in Pichia pastoris suitable for chitooligosaccharides preparation[J]. International Journal of Biological Macromolecules,2020,149:1034−1041. doi: 10.1016/j.ijbiomac.2020.02.001
|
[53] |
刘素稳, 吴瞻邑, 由璐, 等. 山楂果胶低聚半乳糖醛酸提取物对中波紫外线辐射HaCaT细胞氧化损伤和光老化的保护作用[J]. 食品科学,2018,39(21):210−218. [LIU S W, WU Z Y, YOU L, et al. Protective effect of hawthorn pectin oligogalacturonide extract against ultraviolet B-induced oxidative damage and photoaging in HaCaT cells[J]. Food Science,2018,39(21):210−218. doi: 10.7506/spkx1002-6630-201821032
|
[54] |
ENOKI T, OKUDA S, KUDO Y, et al. Oligosaccharides from agar inhibit pro-inflammatory mediator release by inducing heme oxygenase 1[J]. Bioscience, Biotechnology, and Biochemistry,2010,74(4):766−770. doi: 10.1271/bbb.90803
|
[55] |
王晓晨, 吉爱国. NF-κB信号通路与炎症反应[J]. 生理科学进展,2014,45(1):68−71. [WANG X C, JI A G. NF-κB signaling pathway and inflammatory response[J]. Progress in Physiological Sciences,2014,45(1):68−71.
|
[56] |
HUANG W, HUANG M, OUYANG H, et al. Oridonin inhibits vascular inflammation by blocking NF-κB and MAPK activation[J]. European Journal of Pharmacology,2018,826:133−139. doi: 10.1016/j.ejphar.2018.02.044
|
[57] |
刘美思. 几种海洋寡糖免疫调控作用初探[D]. 大连: 辽宁师范大学, 2016.
LIU M S. Investigations on immune regulations of several marine oligosaccharides[D]. Dalian: Liaoning Normal University, 2016.
|
1. |
王潇,李栋,张立攀. 杜仲叶不同溶剂萃取物对ACE酶活的抑制作用. 河南化工. 2024(01): 25-30 .
![]() | |
2. |
李硕,尼格尔热依·亚迪卡尔,朱金芳,冯作山,邓术升. 小白杏生理落果中多酚提取及体外抗氧化活性分析. 新疆农业科学. 2024(03): 623-631 .
![]() | |
3. |
梅瀚,曹金凤,刘世巍,马建龙,丁建海. 超声辅助提取葡萄籽中原花青素工艺及抗氧化活性研究. 广东化工. 2023(05): 38-41 .
![]() | |
4. |
徐兰程,杨佳燕,徐惠,陈金玉,何碧梅,王晓平,辛桂瑜. 响应面法优化芒果核黄酮提取工艺研究. 中国饲料. 2023(08): 18-22 .
![]() | |
5. |
马嘉洁,赵端端,全世航,郇淇童,郝帅,李坤,朴春香,李官浩,李红梅,牟柏德. 紫苏叶黄酮、多酚提取工艺优化及不同品种抗氧化活性比较. 食品工业科技. 2023(12): 344-352 .
![]() | |
6. |
杨郑州,李曦,谢晓娜. 芒果皮多酚提取工艺的优化及抗氧化能力分析. 江西农业学报. 2023(05): 103-108 .
![]() | |
7. |
陈徐回,熊财智,梅瀚,马建龙,曹金凤,刘世巍,丁建海. 葡萄籽抗氧化活性成分研究. 广州化工. 2023(09): 77-80 .
![]() | |
8. |
康超,聂辉,黄双全,伍淑婕,刘凤听. 芒果不同部位多酚化合物抗氧化和抑菌活性研究. 食品科技. 2023(07): 170-175 .
![]() | |
9. |
万荣,农斯伟,杨郑州,卢春静,朱正杰,侯宪斌. 芒果皮核生物学功能及其在动物养殖中的应用研究进展. 饲料研究. 2022(08): 147-149 .
![]() | |
10. |
高国燕,蒋林树,年芳,王慧. 不同省份小果沙棘叶中黄酮类化合物含量测定及体外抗氧化能力评价. 中国饲料. 2022(10): 30-35 .
![]() | |
11. |
郭荣珍,梁茂文,刘纯友,杨锋,丘静. 芒果核提取物对冷藏过程中水牛肉品质的影响. 广西科技大学学报. 2022(04): 100-106 .
![]() | |
12. |
关淑文,潘予琮,寇伟,年芳,蒋林树. 基于高效液相色谱特征指纹图谱法探究不同品种苜蓿中黄酮抗氧化活性的谱-效关系. 动物营养学报. 2022(12): 8086-8096 .
![]() |