SUN Shixin, LI Ke, LUO Pengfei, et al. Process Optimization of γ-Aminobutyric Acid-rich Yoghurt by Mixing Fermentation with Double Strains[J]. Science and Technology of Food Industry, 2021, 42(16): 129−137. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010245.
Citation: SUN Shixin, LI Ke, LUO Pengfei, et al. Process Optimization of γ-Aminobutyric Acid-rich Yoghurt by Mixing Fermentation with Double Strains[J]. Science and Technology of Food Industry, 2021, 42(16): 129−137. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010245.

Process Optimization of γ-Aminobutyric Acid-rich Yoghurt by Mixing Fermentation with Double Strains

More Information
  • Received Date: January 31, 2021
  • Available Online: June 16, 2021
  • In order to promote the content and quality of γ-aminobutyric acid (GABA) in γ-aminobutyric acid-rich yogurt, defatted reconstituted dairy was taken as the main raw material, Lactococcus lactis subsp. lactis with high-yielding potential of GABA in dairy-based medium selected previously by research group was used as start culture, viable count, yield of GABA, residue of L-Glu-Na and sensory evaluation were taken as evaluation indexes, to carry out research on optimizing the fermentation process of yogurt rich in GABA. Through single factor experiment and uniform experiment, model equation of double-strain mixed fermentation in defatted reconstituted milk was derived, and the optimal fermentation conditions were determined. Results showed that: Compound strain was Lactobacillus casei, proportion of Lactococcus lactis subsp. lactis and Lactobacillus casei 1:3, fermentation time 48 h, fermentation temperature 32 ℃, addition of L-Glu-Na 8 g/L. Finally, the yield of GABA was 4.10±0.10 g/L, which was 3.78 times of that before optimization. In addition, viable count was 3.03×1010±1.75×1010 CFU/g, acidity of yogurt was 129.67±2.08 °T, residue of L-Glu-Na was 0.11±0.01 g/L, all indexes met the requirements of GB19302-2010 National Food Safety Standard Fermented Milk, and the sensory evaluation score was 78.42±4.63. This process would be hopeful to provide a basis for development of more fermented dairy products rich in GABA.
  • [1]
    Luka Milosevic, Robert Gramer, Tae Hyun Kim, et al. Modulation of inhibitory plasticity in basal ganglia output nuclei of patients with Parkinson's disease[J]. Neurobiology of Disease,2019,124(4):46−56.
    [2]
    Dai-Hung Ngo, Thanh Sang Vo. An updated review on pharmaceutical properties of gamma-aminobutyric acid[J]. Molecules,2019,24(15):2678−2700. doi: 10.3390/molecules24152678
    [3]
    Yi-Ting Tung, Bao-Hong Lee, Chin-Feng Liu, et al. Optimization of culture condition for ACEI and GABA production by lactic acid bacteria[J]. Journal of Food Science,2011,76(9):M585−591. doi: 10.1111/j.1750-3841.2011.02379.x
    [4]
    马燕, 段双梅, 赵明. 富含γ-氨基丁酸食品的研究进展[J]. 氨基酸和生物资源,2016,38(3):1−6.
    [5]
    邱文军. 产谷氨酸脱羧酶菌株筛选及生产γ-氨基丁酸的研究[D]. 无锡: 江南大学, 2014.
    [6]
    Barry J Shelp, Robert T Mullen, Jeffrey C Waller. Compartmentation of GABA metabolism raises intriguing questions[J]. Trends in Plant Science,2012,17(2):57−59. doi: 10.1016/j.tplants.2011.12.006
    [7]
    Yamatsu A, Yamashita Y, Pandharipande T, et al. Effect of oral γ-aminobutyric acid (GABA) administration on sleep and its absorption in humans[J]. Food Science and Biotechnology,2016,25(2):547−551. doi: 10.1007/s10068-016-0076-9
    [8]
    Zheng S L, Zhu J R, Li J, et al. Leonurine protects ischemia-induced brain injury via modulating SOD, MDA and GABA levels[J]. Frontiers of Agricultural Science and Engineering,2019,6(2):197−205. doi: 10.15302/J-FASE-2018245
    [9]
    堀江典子, 菅美奈子, 金武祚. GABA(γ-氨基丁酸)的功能性[J]. 中国食品添加剂,2010(6):169−173. doi: 10.3969/j.issn.1006-2513.2010.06.027
    [10]
    Stephen G Brickley, Nicholas P Franks, William Wisden. Modulation of GABAA receptor function and sleep[J]. Current Opinion in Physiology,2018,2(4):51−57.
    [11]
    刘韩, 杨文钦, 藏传刚,等. 富含γ-氨基丁酸青春双歧杆菌的酸奶稳定性研究[J]. 中国奶牛,2012(11):32−34. doi: 10.3969/j.issn.1004-4264.2012.11.015
    [12]
    宋伟, 马霞, 张柏林. γ-氨基丁酸的生理功效及其在乳品中的强化途径[J]. 乳业科学与技术,2008,31(6):297−302. doi: 10.3969/j.issn.1671-5187.2008.06.014
    [13]
    刘丽娜, 李顺峰, 田广瑞, 等. 产GABA乳酸菌菌种筛选及其谷氨酸脱羧酶的酶学性质研究[J]. 食品科技,2018,43(6):8−12.
    [14]
    Noriko Komatsuzaki, Jun Shima, Shinichi Kawamoto, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods[J]. Food Microbiology,2005,22(6):497−504. doi: 10.1016/j.fm.2005.01.002
    [15]
    刘源, 王文利, 张丹妮. 食品鲜味研究进展[J]. 中国食品学报,2017,17(9):1−10.
    [16]
    韩梅, 徐志远, 于鹏. 富含γ-氨基丁酸酸奶的研制[J]. 江西农业大学学报,2012,34(3):595−598. doi: 10.3969/j.issn.1000-2286.2012.03.035
    [17]
    Marie-Pierre Castanie-Cornet, John W Foster. Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes[J]. Microbiology,2001,147(3):709−715. doi: 10.1099/00221287-147-3-709
    [18]
    陈静. 高产GABA乳酸菌的筛选鉴定、发酵优化及谷氨酸脱羧酶基因的分子改造[D]. 自贡: 四川轻化工大学, 2019.
    [19]
    周青. 产γ-氨基丁酸乳酸菌的发酵与应用研究[D]. 杭州: 浙江工业大学, 2011.
    [20]
    上官文菲. 益生菌生物转化制备γ-氨基丁酸的研究[D]. 西安: 陕西科技大学, 2020.
    [21]
    刘俐. 产γ-氨基丁酸乳酸菌的选育、鉴定及其发酵条件的优化[D]. 呼和浩特: 内蒙古农业大学, 2015.
    [22]
    赵树平, 陈永福, 孙天松,等. 瑞士乳杆菌ND01(L. helveticus ND01)发酵乳中ACE抑制活性和γ-氨基丁酸的研究[J]. 中国食品学报,2009,9(6):48−54. doi: 10.3969/j.issn.1009-7848.2009.06.008
    [23]
    贤乾隆. 产γ-氨基丁酸乳酸菌的筛选及其功能性发酵酸奶的研制[D]. 柳州: 广西科技大学, 2013.
    [24]
    韩啸. 乳杆菌产γ-氨基丁酸能力分析及其发酵乳改善睡眠效果评价[D]. 无锡: 江南大学, 2019.
    [25]
    Skriver A, Stenby E, Folkenberg D M, et al. Tools in the development of future starter cultures for fermented milk[C]// Proceedings of the IDF seminar on aroma and texture of fermented milk, Denmark, 2003: 55-61.
    [26]
    薛玉清, 单艺, 满朝新,等. γ-氨基丁酸发酵乳的研制[J]. 食品与发酵工业,2013,39(11):85−90.
    [27]
    Han M, Liao W Y, Wu S M, et al. Use of Streptococcus thermophilus for the in situ production of γ-aminobutyric acid-enriched fermented milk[J]. Journal of Dairy Science,2019,103(1):1−8.
    [28]
    侯团伟, 段剑平, 吴晓红. 发酵剂在乳品中应用的影响因素及协同发酵的研究进展[J]. 食品工业科技,2021,42(1):378−386.
    [29]
    Luciana Herve-Jimenez, Isabelle Guillouard, Eric Guedon, et al. Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: Involvement of nitrogen, purine, and iron metabolism[J]. Applied and Environmental Microbiology,2009,75(7):2062−2073. doi: 10.1128/AEM.01984-08
    [30]
    田辉, 梁宏彰, 霍贵成, 等. 嗜热链球菌的特性与应用研究进展[J]. 生物技术通报, 2015, 31(9): 38-48.
    [31]
    R G Crittenden, N R Martinez, M J Playne. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria[J]. International Journal of Food Microbiology,2003,80(3):217−222. doi: 10.1016/S0168-1605(02)00170-8
    [32]
    Sylviane Derzelle, Alexander Bolotin, Michel-Yves Mistou, et al. Proteome analysis of Streptococcus thermophilus grown in milk reveals pyruvate formate-lyase as the major upregulated protein[J]. Applied and Environmental Microbiology,2005,71(12):8597−8605. doi: 10.1128/AEM.71.12.8597-8605.2005
    [33]
    Driessen F M, Kingma F, Stadhouders J. Evidence that Lactobacillus bulgaricus in yoghurt is stimulated by carbon dioxide produced by Streptococcus thermophiles[J]. Netherlands Milk and Dairy Journal,1982,36(2):135−144.
    [34]
    Courtin P, V Monnet, F Rul. Cell wall proteinases PrtS and PrtB have a different role in Streptococcus thermophilus/Lactobacillus bulgaricus mixed cultures in milk[J]. Microbiology,2002,148(11):3413−3421. doi: 10.1099/00221287-148-11-3413
    [35]
    Nestor Gutierrez-Mendez, Belinda Vallejo-Cordoba, Aron FGonzález-Córdova, et al. Evaluation of aroma generation of Lactococcuslactis with an electronic nose and sensory analysis[J]. Journal of Dairy Science,2008,91(1):49−57. doi: 10.3168/jds.2007-0193
    [36]
    舒梨. 副干酪乳杆菌素的分离纯化、抑菌特性及机理初探[D]. 自贡: 四川轻化工大学, 2019.
    [37]
    何慧玲. 高产酸及耐酸性干酪乳杆菌的诱变筛选及其发酵条件的优化[D]. 武汉: 武汉轻工大学, 2017.
    [38]
    张天萌. 谷氨酸脱羧酶的克隆表达及酶学性质研究[D]. 无锡: 江南大学, 2012.
    [39]
    吕常江. 生理工程策略提升乳酸菌γ-氨基丁酸合成效率的研究[D]. 杭州: 浙江大学, 2017.
    [40]
    Masaru Nomura, lkuyo Nakajima, Yasuhito Fujita, et al. Lactococcus lactis contains only one glutamate decarboxylase gene[J]. Microbiology,1999,145(6):1375−1380. doi: 10.1099/13500872-145-6-1375

Catalog

    Article Metrics

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return