HONG Senhui, YANG Xiuwen, HUANG Xiaoxue, et al. Improving the Hydrophobicity of Blueberry Anthocyanins through Enzymatic Acylation Modification[J]. Science and Technology of Food Industry, 2021, 42(19): 78−83. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010208.
Citation: HONG Senhui, YANG Xiuwen, HUANG Xiaoxue, et al. Improving the Hydrophobicity of Blueberry Anthocyanins through Enzymatic Acylation Modification[J]. Science and Technology of Food Industry, 2021, 42(19): 78−83. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010208.

Improving the Hydrophobicity of Blueberry Anthocyanins through Enzymatic Acylation Modification

More Information
  • Received Date: January 26, 2021
  • Available Online: August 01, 2021
  • In order to solve the problem of poor hydrophobicity of anthocyanins, in this paper, the blueberry anthocyanin was acylated with ferulic acid and caffeic acid, and the structure, hydrophobicity and antioxidant activity of related products were analysed. The FTIR and UV-Vis analysis indicated that ferulic acid and caffeic acid were grafted on the -OH of the glycosyl of the blueberry anthocyanins through acylation reaction, and the acylation degree of the anthocyanins acylated with ferulic acid (Fe-An) and caffeic acid (Ca-An) was 3.65% and 3.71%, respectively. Meanwhile, the total anthocyanidin content was decreased from 370.2 mg/g (Na-An) to 219.2 mg/g (Fe-An) and 222.18 mg/g (Ca-An), respectively. In addition, the hydrophobicity and antioxidant activity of blueberry anthocyanins were significantly improved after acylation with the two phenolic acids. The octanol-water partition coefficient (KOW) was increased from −0.20 (Na-An) to 0.66 (Fe-An) and 0.78 (Ca-An), DPPH clearance increased from 66.3% (Na-An) to 68.4% (Fe-An) and 74.7% (Ca-An), and inhibition ratio of β-carotene bleaching increased from 63.1% (Na - An) to 85.5% (Fe-An) and 90.3% (Ca-An). The results show that the introduction of ferulic acid and caffeic acid significantly improve the hydrophobicity and antioxidant activity of blueberry anthocyanins, which will greatly expand the application of anthocyanins in high-fat foods.
  • [1]
    陈梦雨, 黄小丹, 王钊, 等. 植物原花青素的研究进展及其应用现状[J]. 中国食物与营养,2018,24(3):54−58. [Chen M Y, Huang X D, Wang Z, et al. Research progress and application of plant proanthocyanidin[J]. Food and Nutrition in China,2018,24(3):54−58. doi: 10.3969/j.issn.1006-9577.2018.03.012
    [2]
    王静, 王瑾, 徐建峰, 等. 茶叶中花青素测定方法研究进展及分光光度测定法的优化[J]. 中国茶叶加工,2019(3):59−62, 69. [Wang J, Wang J, Xu J, et al. Advance on detection of anthocyanins in tea and improvementof spectrophotometry[J]. China Tea Processing,2019(3):59−62, 69.
    [3]
    Wang W, Hao X, Chen S, et al. pH-Responsive capsaicin@ chitosan nanocapsules for antibiofouling in marine applications[J]. Polymer,2018,158:223−230. doi: 10.1016/j.polymer.2018.10.067
    [4]
    Wang Y, Lin J, Tian J F, et al. Blueberry malvidin-3-galactoside suppresses hepatocellular carcinoma by regulating apoptosis, proliferation, and metastasis pathways in vivo and in vitro [J]. Journal of Agricultural and Food Chemistry,2019,67(2):625−363. doi: 10.1021/acs.jafc.8b06209
    [5]
    Roehrig T, Kirsch V, Schipp D, et al. Absorption of anthocyanin rutinosides after consumption of a blackcurrant (Ribes nigrum L.) extract[J]. Journal of Agricultural and Food Chemistry,2019,67(24):6792−6797. doi: 10.1021/acs.jafc.9b01567
    [6]
    蒋新龙, 蒋益花. 黑豆皮花色苷酯化修饰及其降解与抗氧化特性[J]. 中国粮油学报,2018,33(9):34−41. [Jiang X L, Jiang Y H. The black soybean peel anthocyanin process of esterification modified and its degradation and antioxidant characteristics[J]. Journal of the Chinese Cereals and Oils Association,2018,33(9):34−41. doi: 10.3969/j.issn.1003-0174.2018.09.006
    [7]
    古明辉, 陈虎, 李希羽, 等. 苹果酸酰化对黑果枸杞花青素稳定性改善的研究[J]. 食品工业科技,2017,38(23):58−63, 68. [Gu M H, Chen H, Li X Y, et al. Study of improvement on stability of anthocyanin modified by malic acid acylation from Lycium ruthenicum[J]. Science and Technology of Food Industry,2017,38(23):58−63, 68.
    [8]
    Koh J, Xu Z, Wicker L. Binding kinetics of blueberry pectin-anthocyanins and stabilization by non-covalent interactions[J]. Food Hydrocolloids,2020,99:105354. doi: 10.1016/j.foodhyd.2019.105354
    [9]
    Liu L, Ye C, Soteyome T, et al. Inhibitory effects of two types of food additives on biofilm formation by foodborne pathogens[J]. Microbiology Open,2019,8(9):e853.
    [10]
    Baron G, Altomare A, Regazzoni L, et al. Pharmacokinetic profile of bilberry anthocyanins in rats and the role of glucose transporters: LC–MS/MS and computational studies[J]. Journal of Pharmaceutical and Biomedical Analysis,2017,144:112−121. doi: 10.1016/j.jpba.2017.04.042
    [11]
    Brauch J E, Reuter L, Conrad J, et al. Characterization of anthocyanins in novel Chilean maqui berry clones by HPLC–DAD–ESI/MSn and NMR-spectroscopy[J]. Journal of Food Composition and Analysis,2017,58:16−22. doi: 10.1016/j.jfca.2017.01.003
    [12]
    Mehmood A, Zhao L, Wang Y, et al. Dietary anthocyanins as potential natural modulators for the prevention and treatment of non-alcoholic fatty liver disease: A comprehensive review[J]. Food Research International,2021,142:110180. doi: 10.1016/j.foodres.2021.110180
    [13]
    Li Y, Xu Y, Xie J, et al. Malvidin-3-O-arabinoside ameliorates ethyl carbamate-induced oxidative damage by stimulating AMPK-mediated autophagy[J]. Food & Function,2020,11(12):10317−10328.
    [14]
    张美清, 曾繁森, 叶妍琦, 等. 黑果枸杞花色苷pH和氨气敏感性及其抗氧化活性[J]. 食品工业科技,2021,42(1):22−27. [Zhang M Q, Zeng F S, Ye Y Q, et al. The pH and ammonia sensitivity and antioxidantactivity of anthocyanins from Lycium ruthenicum[J]. Science and Technology of Food Industry,2021,42(1):22−27.
    [15]
    李楠, 曾永明, 王国振, 等. 超声辅助酶法提取薰衣草花色苷及其热降解动力学[J]. 食品工业科技,2020,41(1):150−157. [Li N, Zeng Y M, Wang G Z, et al. Ultrasonic-assisted enzymatic extraction and thermal degradation kinetics of anthocyanins from lavender[J]. Science and Technology of Food Industry,2020,41(1):150−157.
    [16]
    潘颖, 梁颖, 马蓉, 等. 紫甘蓝花色昔稳定性及热降解动力学研究[J]. 食品工业科技,2021,42(5):51−59. [Pan Y, Liang Y, Ma R, et al. Stability and degradation kinetics of anthocyanins from red cabbage[J]. Science and Technology of Food Industry,2021,42(5):51−59.
    [17]
    Qin Y, Liu Y, Zhang X, et al. Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films[J]. Food Hydrocolloids,2020,100:105410. doi: 10.1016/j.foodhyd.2019.105410
    [18]
    Jiang G, Hou X, Zeng X, et al. Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness[J]. International Journal of Biological Macromolecules,2020,143:359−372. doi: 10.1016/j.ijbiomac.2019.12.024
    [19]
    Mahdavi S A, Jafari S M, Assadpour E, et al. Storage stability of encapsulated barberry's anthocyanin and its application in jelly formulation[J]. Journal of Food Engineering,2016,181:59−66. doi: 10.1016/j.jfoodeng.2016.03.003
    [20]
    Khoo H E, Azlan A, Tang S T, et al. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits[J]. Food & Nutrition Research,2017,61(1):1−21.
    [21]
    Bornsek S M, Ziberna L, Polak T, et al. Bilberry and blueberry anthocyanins act as powerful intracellular antioxidants in mammalian cells[J]. Food Chemistry,2012,134(4):1878−1884. doi: 10.1016/j.foodchem.2012.03.092
    [22]
    Yan Z, Li C, Zhang L, et al. Enzymatic acylation of anthocyanin isolated from black rice with methyl aromatic acid ester as donor: Stability of the acylated derivatives[J]. Journal of Agricultural and Food Chemistry,2016,64(5):1137−1143. doi: 10.1021/acs.jafc.5b05031
    [23]
    Cai J, Zeng F, Zheng S, et al. Preparation of lipid-soluble bilberry anthocyanins through acylation with cinnamic acids and their antioxidation activities[J]. Journal of Agricultural and Food Chemistry,2020,68(28):7467−7473. doi: 10.1021/acs.jafc.0c01912
    [24]
    Yang W, Kortesniemi M, Ma X, et al. Enzymatic acylation of blackcurrant (Ribes nigrum) anthocyanins and evaluation of lipophilic properties and antioxidant capacity of derivatives[J]. Food Chemistry,2019,281:189−196. doi: 10.1016/j.foodchem.2018.12.111
    [25]
    Liu J, Zhuang Y, Hu Y, et al. Improving the color stability and antioxidation activity of blueberry anthocyanins by enzymatic acylation with p-coumaric acid and caffeic acid[J]. LWT-Food Science and Technology,2020,130:109673. doi: 10.1016/j.lwt.2020.109673
    [26]
    Pinheiro E S R, Silva I M D A, Gonzaga L V, et al. Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology[J]. Bioresource Technology,2008,99(3):5561−5566.
    [27]
    Bochek A, Zabivalova N, Petropavlovskii G. Determination of the esterification degree of polygalacturonic acid[J]. Russian Journal of Applied Chemistry,2001,74(5):796−799. doi: 10.1023/A:1012701219447
    [28]
    Fei P, Zeng F, Zheng S, et al. Acylation of blueberry anthocyanins with maleic acid: Improvement of the stability and its application potential in intelligent color indicator packing materials[J]. Dyes and Pigments,2021,184:108852. doi: 10.1016/j.dyepig.2020.108852
    [29]
    Keyata E O, Tola Y B, Bultosa G, et al. Phytochemical contents, antioxidant activity and functional properties of Raphanus sativus L, Eruca sativa L. and Hibiscus sabdariffa L. growing in Ethiopia[J]. Heliyon,2021,7(1):e05939. doi: 10.1016/j.heliyon.2021.e05939
    [30]
    Harborne J B. Spectral methods of characterizing anthocyanins[J]. Biochemical Journal,1958,70(1):22−28. doi: 10.1042/bj0700022
    [31]
    Harborne J B. The natural distribution in angiosperms of anthocyanins acylated with aliphatic dicarboxylic acids[J]. Phytochemistry,1986,25(8):1887−1894. doi: 10.1016/S0031-9422(00)81168-1
  • Related Articles

    [1]YU Yanqi, YANG Mingyuan, LÜ Chunmao, BAI Shaoci, ZHANG Qunfang, ZOU Chenyang, JIANG Han. Comprehensive Evaluation of Chestnut Quality Based on Principal Component and Cluster Analysis[J]. Science and Technology of Food Industry, 2025, 46(2): 280-291. DOI: 10.13386/j.issn1002-0306.2024020255
    [2]LI Ke, LIN Zixi, LIU Jia, LIAO Maowen, YUAN Huaiyu, LIANG Yumei, PAN Cuiping, GUO Nanbin, ZHU Yongqing, ZHANG Guowei, LI Huajia. Comprehensive Evaluation of Plums Quality Based on Principal Component Analysis and Cluster Analysis[J]. Science and Technology of Food Industry, 2024, 45(8): 293-300. DOI: 10.13386/j.issn1002-0306.2023060002
    [3]XU Wenjing, CHEN Changlin, DENG Sha, LIU Yijun, LÜ Yuanping. Comprehensive Evaluation of Blueberry Quality Based on Principal Component Analysis and Cluster Analysis[J]. Science and Technology of Food Industry, 2022, 43(13): 311-319. DOI: 10.13386/j.issn1002-0306.2021110198
    [4]WANG Ronglin, XIE Linmei, LV Feng. Improving the Quality of Frozen Purple Sweet Potato Ball with Chinese Yam by Factor Analysis and Box-Behnken Response Surface[J]. Science and Technology of Food Industry, 2021, 42(2): 146-153,160. DOI: 10.13386/j.issn1002-0306.2020030258
    [5]ZHANG Tang-wei, HE Ji-feng, YU Yao-bin, CI Dun. Mutton quality and its factor analysis of Gangba sheep[J]. Science and Technology of Food Industry, 2018, 39(8): 279-284. DOI: 10.13386/j.issn1002-0306.2018.08.051
    [6]SUN Qi-ran, LIU Pei, LI Hui-wei, LIU Lin, NI Sai-jia, XUE Feng, SHANG Er-xin, DUAN Jin-ao. Analysis and evaluation of main nutritional ingredients in residual of lotus root from different areas[J]. Science and Technology of Food Industry, 2018, 39(6): 291-297. DOI: 10.13386/j.issn1002-0306.2018.06.054
    [7]DING Jie, ZHAO Xue-mei, ZHU Jin-yan, LIU Ji, LIAO Cheng-cheng, QIN Wen, HE Jiang-hong. Principal component,factor analysis and cluster analysis of the effect of freshwater fish species on the quick-frozen highland barley fish noodle quality[J]. Science and Technology of Food Industry, 2018, 39(1): 34-40,51. DOI: 10.13386/j.issn1002-0306.2018.01.007
    [8]ZOU Shu-ping, ZHAO Ting, TAI Xiao-liang, MENG Yi-na, MA Yan, XU Ming-qiang, ZHANG Qian. Quality and cluster analysis of potato varieties mainly grown in Xinjiang[J]. Science and Technology of Food Industry, 2017, (11): 295-298. DOI: 10.13386/j.issn1002-0306.2017.11.048
    [9]MA Yi- dan, LIU Hong, YAN Rui-xin, MA Si-cong, XUE Bing-xiang, WANG Qian. Analysis and evaluation of nutrient content of Synsepalum dulcificum seed[J]. Science and Technology of Food Industry, 2016, (13): 346-351. DOI: 10.13386/j.issn1002-0306.2016.13.063
    [10]JIANG Fang-yan, SONG Wen-ming, YANG Ning, HUANG Hai. Analysis and evaluation of nutrient content of Caulerpa lentillifera[J]. Science and Technology of Food Industry, 2014, (24): 356-359. DOI: 10.13386/j.issn1002-0306.2014.24.067
  • Cited by

    Periodical cited type(21)

    1. 杜涓,舒雄辉,张晨曦,侯温甫,艾有伟,王宏勋,韩娅红. 基于TG酶介导的莲藕风味鱼糕配方优化研究及其品质评价. 中国食品添加剂. 2024(02): 176-185 .
    2. 吴宇昊,戴芳,丛欣,祝振洲,李书艺,梅新,陈学玲. 不同采收期不同品种莲藕的营养品质变化规律及评价. 食品安全质量检测学报. 2024(03): 9-17 .
    3. 陈亚欣,曾荣,陈龙,唐楠锐,张妮,张国忠. 莲藕表皮力学特性试验研究. 甘肃农业大学学报. 2024(01): 304-312 .
    4. 贾凤娟,程慧,王延圣,弓志青,崔文甲,王文亮. 藕片热泵干燥工艺优化及全藕粉品质评价. 中国果菜. 2024(03): 56-63 .
    5. 吴宇昊,祝振洲,丛欣,李书艺,梅新,陈学玲. 不同莲藕品种的营养品质分析与评价. 中国瓜菜. 2024(04): 127-132 .
    6. 郭鲁平,黄璐,程茜,张晓燕,袁星星,陈新,薛晨晨. 江苏省春播鲜食大豆主栽品种营养和功能品质研究. 大豆科学. 2023(01): 91-98 .
    7. 马泮龙,李利明,倪龙凤,何勇. 莲藕品种比较试验. 浙江农业科学. 2023(03): 635-638 .
    8. 孙海娟,李洁,刘义满,汪李平,严守雷. 不同品种莲藕加工制汁适宜性评价. 食品科学技术学报. 2023(02): 164-174 .
    9. 张国忠,吕紫薇,刘浩蓬,刘婉茹,龙长江,黄成龙. 基于改进DenseNet和迁移学习的荷叶病虫害识别模型. 农业工程学报. 2023(08): 188-196 .
    10. 姜健,王晓玮,刘柏林,谢继安,韦莹,王秀莉,单晓梅. 安徽省四种市售水生蔬菜中铅、镉、总铬和总砷污染状况. 环境卫生学杂志. 2023(06): 469-473 .
    11. 赖政,盛颖,肖力婷,杨慧林,阳文静,简敏菲. 鄱阳湖越冬白鹤肠道微生物群落结构及功能预测分析. 微生物学报. 2023(11): 4302-4314 .
    12. 程传民,李云,叶岚,魏晓星,丁小乔,辛钊汋,邝婷婷,冯波,程大顺,高琴,张静,张林. 饲料中铅的检测原子吸收法关键控制要素. 饲料博览. 2023(06): 63-66 .
    13. 张鹏,颜碧,贾晓昱,李江阔. 鲜切莲藕防褐变剂配方优化及保鲜效果研究. 食品与发酵工业. 2022(01): 169-175 .
    14. 顾晓敏,童川,韩延超,陈杭君,郜海燕. 不同品种莲藕游离氨基酸多样性分析. 食品科学. 2022(04): 183-189 .
    15. 辜芸,周鸿,李娟. 江西省市售水生蔬菜中微量元素含量调查及健康风险评估. 江西科学. 2022(02): 264-267+286 .
    16. 陈敏氡,王彬,李永平,叶新如,林锦辉,曾美娟,刘建汀,朱海生,温庆放. 六个品种花椰菜花球的营养成分分析与评价. 热带亚热带植物学报. 2022(03): 349-356 .
    17. 王燕,付琪,李颖,罗芳,林振宇. 近红外光谱分析技术快速检测藕粉品质. 食品安全质量检测学报. 2022(15): 5026-5034 .
    18. 许粟,姚绍炉,刘宇泽,费强,马风伟,陈海江,李勇,许洁舲,肖娟,王欣颖,陈光静. 响应面优化淀粉型刺梨凝胶软糖配方工艺. 食品工业科技. 2022(17): 240-247 . 本站查看
    19. 张晨,史艳楠,杨宁宁,秦莉莉,唐佳伟,董臣. 不同口感鲜切莲藕褐变的生理生化及分子机制研究. 食品与发酵工业. 2022(22): 165-171 .
    20. 邵旭鹏,李寐华,沈琦,范盈盈,方晓彤,王成,刘峰娟. 新疆吐鲁番地区不同品种甜瓜营养成分分析及品质综合评价. 食品工业科技. 2021(13): 358-365 . 本站查看
    21. 顾涛,朱晓华,赵信文,江拓,邱啸飞,郑小战,帅琴. 广州新垦莲藕产区莲藕品质与地球化学条件的关系. 岩矿测试. 2021(06): 833-845 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (312) PDF downloads (30) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return