DING Zhengyu, ZHANG Shikai, HE Ziyang, et al. Optimization of Enzymatic Extraction Process of Insoluble Dietary Fiber from Polygonatum sibiricum Residue by Response Surface Methodology and Its Characterization[J]. Science and Technology of Food Industry, 2021, 42(20): 157−163. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010094.
Citation: DING Zhengyu, ZHANG Shikai, HE Ziyang, et al. Optimization of Enzymatic Extraction Process of Insoluble Dietary Fiber from Polygonatum sibiricum Residue by Response Surface Methodology and Its Characterization[J]. Science and Technology of Food Industry, 2021, 42(20): 157−163. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010094.

Optimization of Enzymatic Extraction Process of Insoluble Dietary Fiber from Polygonatum sibiricum Residue by Response Surface Methodology and Its Characterization

More Information
  • Received Date: January 14, 2021
  • Available Online: August 19, 2021
  • The insoluble dietary fiber (HIDF) was extracted from Polygonatum sibiricum residue by response surface methodology. Firstly, the effects of solid-liquid ratio, papain concentration, papain hydrolysis time, α-amylase concentration and α-amylase hydrolysis time on the extraction rate of HIDF were discussed by single factor experiments, the extraction process parameters were optimized by response surface methodology (Box-Behnken). Finally, infrared spectrum analysis, X-ray diffraction and scanning electron microscope observation were carried out, the functional properties were determined. The results showed that the optimum extraction conditions were as follows: Solid-liquid ratio 1:20 mL/g, papain concentration 0.13%, papain enzymolysis time 1.9 h, α-amylase concentration 0.29%, α-amylase hydrolysis time 2 h, the content of HIDF was 52.184%. The hydraulic holding capacity, oil holding capacity and swelling capacity of HIDF were 5.99±0.05 g/g, 3.965±0.04 g/g and 4.565±0.05 mL/g, respectively. Therefore, HIDF extracted from Polygonatum sibiricum residue had good physical and chemical properties and was suitable for processing into functional food, which provided a reference for improving the utilization rate of Polygonatum sibiricum residue and further excavating its nutritional value.
  • [1]
    Wang C F, Song R Z, Wei S Q, et al. Modification of insoluble dietary fiber from ginger residue through enzymatic treatments to improve its bioactive properties[J]. Lwt Food Science & Technology,2020,125:109220.
    [2]
    Xu Z H, Xiong X, Zeng Q Z, et al. Alterations in structural and functional properties of insoluble dietary fibers-bound phenolic complexes derived from lychee pulp by alkaline hydrolysis treatment[J]. Lwt Food Science & Technology,2020,127:109335.
    [3]
    Kranz S, Brauchla M, Slavin J L, Miller K. B. What do we know about dietary fiber intake in children and health? The effects of fiber intake on constipation, obesity, and diabetes in children[J]. Advances in Nutrition: An International Review Journal,2012,3:47−53. doi: 10.3945/an.111.001362
    [4]
    狄志鸿, 杨善岩, 聂蓉蓉, 等. 膳食纤维降糖作用及机理研究进展[J]. 食品研究与开发,2014(20):138−141. [Di Z H, Yang S Y, Nie R G, et al. Research progress on the hypoglycemic effect and mechanism of dietary fiber[J]. Food research and development,2014(20):138−141. doi: 10.3969/j.issn.1005-6521.2014.20.035
    [5]
    李琦, 曾凡坤, 华蓉, 等. 麦麸膳食纤维理化特性、制备方法及应用研究进展[J]. 食品工业科技,2020,41(17):352−357, 367. [Li Q, Zeng F K, Hua R, et al. Research progress on the physical and chemical properties, preparation methods and application of wheat bran dietary fiber[J]. Food Industry Technology,2020,41(17):352−357, 367.
    [6]
    Zhou X, Zhang Y S, Zhao Y, et al. An LC fingerprint study of Poria cocos (Schw.) Wolf[J]. Chrom,2009,69(11/12):1283−1288.
    [7]
    仲兆金, 刘浚. 黄精有效成分三萜的研究进展[J]. 中成药,2011,23(1):58−62. [Zhong Z J, Liu J. Research progress on triterpenes, the effective constituents of Rhizoma Polygonati[J]. Chinese Patent Medicine,2011,23(1):58−62.
    [8]
    Lu J. P, Zhang J, Zhang Y. Z. The functional activities and application of Polygonatum sibiricum polysaccharides[J]. Journal of Food Safety & Quality,2013,4(1):273−278.
    [9]
    陈小林, 南海珍, 徐志南. 红曲菌发酵黄精渣生产monacolin K的探索性研究[J]. 药学研究,2019,38(1):12−15. [Chen X L, Nan H Z, Xu Z N. Exploratory study on the production of monacolin K from the fermented polygonatum residues of Monascus[J]. Pharmaceutical Research,2019,38(1):12−15.
    [10]
    杨显辉, 代培春, 曾磊, 等. 黄精渣膳食纤维功能面包配方的应用研究[J]. 轻工科技,2019,35(10):18−21. [Yang X H, Dai P C, Zeng L, et al. Application research on formula of functional bread with polygonatum slag dietary fiber[J]. Light Industry Science and Technology,2019,35(10):18−21.
    [11]
    刘学成, 王文亮, 弓志青, 等. 茶树菇膳食纤维改性及理化性质研究[J]. 食品工业科技,2021,42(4):142−148. [Liu X C, Wang W L, Gong Z Q, et al. Study on the modification and physicochemical properties of dietary fiber of Agrocybe cylindrica[J]. Food Industry Science and Technology,2021,42(4):142−148.
    [12]
    薛山, 刘泽明. 鹰嘴芒皮渣水不溶性膳食纤维提取工艺优化及理化性质测定[J]. 北方园艺,2019(7):114−121. [Xue S, Liu Z M. Optimization of extraction process and determination of physical and chemical properties of water-insoluble dietary fiber from oleracea bark residue[J]. Northern Horticulture,2019(7):114−121.
    [13]
    曾庆梅, 杨毅, 殷允旭, 等. 梨渣水不溶性膳食纤维的提取工艺研究[J]. 食品科学,2008(8):275−278. [Zeng Q M, Yang Y, Yin Y X, et al. Study on the extraction technology of water-insoluble dietary fiber from pear residue[J]. Food Science,2008(8):275−278. doi: 10.3321/j.issn:1002-6630.2008.08.059
    [14]
    唐小闲, 邱培生, 段振华, 等. 响应面法优化超声-微波辅助提取莲藕膳食纤维工艺研究[J]. 食品研究与开发,2019,40(6):132−139. [Tang X X, Qiu P S, Duan Z H, et al. Optimization of ultrasonic-microwave-assisted extraction of dietary fiber from lotus root by response surface methodology[J]. Food Research and Development,2019,40(6):132−139. doi: 10.3969/j.issn.1005-6521.2019.06.024
    [15]
    郭赵瑞, 张小康, 周苗苗, 等. 白萝卜不溶性膳食纤维的酸法提取及其理化性质研究[J]. 保鲜与加工,2021,21(3):56−60. [Guo Z R, Zhang X K, Zhou M M, et al. Extraction of insoluble dietary fiber from white radish by acid method and its physical and chemical properties study[J]. Preservation and Processing,2021,21(3):56−60. doi: 10.3969/j.issn.1009-6221.2021.03.009
    [16]
    高晓丽, 宿娅. 酶碱法提取梨渣水不溶性膳食纤维的研究[J]. 食品工程,2014(4):28−23. [Gao X L, Su Y. Study on the extraction of water-insoluble dietary fiber from pear residue by enzyme-alkali method[J]. Food Engineering,2014(4):28−23. doi: 10.3969/j.issn.1673-6044.2014.04.009
    [17]
    谢三都, 陈惠卿, 周春兰, 等. 橄榄渣膳食纤维理化和体外吸附特性及结构表征[J]. 食品与机械,2019,35(10):29−34. [Xie S D, Chen H Q, Zhou C L, et al. Physical and chemical properties andin vitro adsorption characteristics and structural characterization of dietary fiber from olive pomace[J]. Food and Machinery,2019,35(10):29−34.
    [18]
    杜晓静, 白新鹏, 姜泽放, 等. 脱脂椰蓉可溶性膳食纤维制备工艺及单糖组成和理化特性分析[J]. 食品科学,2019,40(2):245−251. [Du X J, Bai X P, Jiang Z F, et al. Preparation technology of defatted coconut soluble dietary fiber and analysis of monosaccharide composition and physical and chemical properties[J]. Food Science,2019,40(2):245−251. doi: 10.7506/spkx1002-6630-20180118-250
    [19]
    Chen H M, Fu X, L uo, Z G. Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water[J]. Food Chemistry,2015,168:302−310. doi: 10.1016/j.foodchem.2014.07.078
    [20]
    周丽珍, 孙海燕, 刘冬, 等. 改性方法对豆渣膳食纤维的结构影响研究[J]. 食品科技,2011,36(1):143−147. [Zhou L Z, Sun H Y, Liu D, et al. Research on the influence of modification methods on the structure of soybean dregs dietary fiber[J]. Food Science and Technology,2011,36(1):143−147.
    [21]
    Zhang Y, Qi J R, Zeng W Q, et al. Properties of dietary fiber from citrus obtained through alkaline hydrogen peroxide treatment and homogenization treatment[J]. Food Chemistry,2019,311:125873.
    [22]
    Alba K, Macnaughtan W, Laws A P, et al. Fractionation and characterisation of dietary fibre from blackcurrant pomace[J]. Food Hydrocolloids,2018,81:398−408. doi: 10.1016/j.foodhyd.2018.03.023
    [23]
    任雨离, 刘玉凌, 何翠, 等. 微波和微粉碎改性对方竹笋膳食纤维性能和结构的影响[J]. 食品与发酵工业,2017,43(8):145−150. [Ren Y L, Liu Y L, He C, et al. The influence of microwave and micro-pulverization on the properties and structure of dietary fiber from bamboo shoots[J]. Food and Fermentation Industries,2017,43(8):145−150.
    [24]
    Lin Y, Wang H, Rao W, et al. Structural characteristics of dietary fiber (Vigna radiata L. hull) and its inhibitory effect on phospholipid digestion as an additive in fish floss[J]. Food Control,2019,98:74−81. doi: 10.1016/j.foodcont.2018.11.016
    [25]
    吴长玲, 陈鹏, 李顺秀, 等. 空化射流条件下豆渣不溶性膳食纤维结构与功能性研究[J]. 农业机械学报,2021,52(3):350−356. [Wu C L, Chen P, Li S X, et al. Effect of cavitation jets on structure and function of okara insoluble dietary fiber[J]. Transactions of the Chinese Society of Agricultural Machinery,2021,52(3):350−356. doi: 10.6041/j.issn.1000-1298.2021.03.039
    [26]
    陈秉彦, 林晓姿, 李维新, 等. 高能机械处理方法对大豆不溶性膳食纤维结构及理化特性的影响[J]. 食品工业科技,2020,41(17):32−36, 44. [Chen B Y, Lin X Z, Li W X, et al. Effects of high-energy mechanical processing methods on the structure and physical and chemical properties of soybean insoluble dietary fiber[J]. Science and Technology of Food Industry,2020,41(17):32−36, 44.
    [27]
    周贺霞, 刘菲, 王兴敏, 等. 超声波辅助酶法提取地瓜渣中不可溶性膳食纤维工艺研究[J]. 食品与发酵科技,2020,56(1):1−6. [Zhou H X, Liu F, Wang X M, et al. Ultrasonic-assisted enzymatic extraction of insoluble dietary fiber from sweet potato residues[J]. Food and Fermentation Science & Technology,2020,56(1):1−6. doi: 10.3969/j.issn.1674-506X.2020.01.001
    [28]
    钟雅云, 杨敏, 何沁峰, 等. 海带与小麦麸皮由来不溶性膳食纤维的酶辅助提取及其功能特性比较[J]. 中国食品学报,2019,19(11):124−131. [Zhong Y Y, Yang M, He Q F, et al. Enzyme-assisted extraction of insoluble dietary fiber derived from kelp and wheat bran and comparison of their functional characteristics[J]. Chinese Journal of Food Science,2019,19(11):124−131.
  • Cited by

    Periodical cited type(7)

    1. 宁淼,乌日娜,贺凯茹,包雨飞,张钰欣,杨慧,武俊瑞. 益生菌缓解牛乳过敏的作用机制研究进展. 食品工业科技. 2025(05): 371-379 . 本站查看
    2. 梅芷晴,马浩睿,刘永峰,胡坚,舒琴. 羊乳母乳化及主要活性成分研究进展. 乳业科学与技术. 2024(04): 38-46 .
    3. 乔蕾蕾,杨敏,秦娟娟,廖海周,季伟,李茜. 酸诱导酪蛋白胶束-海藻酸钠乳液凝胶性质及其对原花青素的负载性能. 食品科学. 2023(16): 50-60 .
    4. 汤晓娜,许曦瑶,赵锋. 牛奶β-酪蛋白水解产物生物活性及A2乳制品的研究进展. 食品与发酵工业. 2023(19): 360-366 .
    5. 马小梅,苏津贤,陈遥,舒星富,张海霞,马忠仁. 动物乳中四种主要蛋白结构功能及其分离纯化方法研究进展. 西北民族大学学报(自然科学版). 2022(02): 74-79 .
    6. 钱冠林,孙敬,刘微,程娇,岳喜庆,郑艳. 双酶水解对脱脂牛乳致敏性的影响. 乳业科学与技术. 2022(04): 36-44 .
    7. 李敏,刘爱成,朱晴,陈馨萍,刘微,梁肖娜,郑艳,岳喜庆. 酶解对脱脂牛乳蛋白抗原性及感官特性的影响. 乳业科学与技术. 2022(04): 14-21 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (326) PDF downloads (32) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return