Citation: | WANG Zheren, LIU Xiaoting, FAN Zhanqing, et al. Construction of the Five-point Mutant in Novel Aspartokinase and Its Enzymatic Characterization from Corynebacterium pekinense[J]. Science and Technology of Food Industry, 2021, 42(16): 112−118. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010071. |
[1] |
郭永玲. 北京棒杆菌(Corynebacterium pekinense)天冬氨酸激酶的定点突变及突变株酶学性质表征[D]. 长春: 吉林农业大学, 2014.
|
[2] |
Manjasetty B A, Chance M R, Burley S K, et al. Crystal structure of Clostridium acetobutylicum aspartate kinase (CaAk): An important allosteric enzyme for amino acids production[J]. Biotechnology Reports,2014,3:73−85. doi: 10.1016/j.btre.2014.06.009
|
[3] |
任军, 闵伟红, 詹冬玲, 等. 天冬氨酸激酶突变体G277K中AK基因的克隆表达及酶学性质表征[J]. 食品科学,2014,35(11):149−154. doi: 10.7506/spkx1002-6630-201411030
|
[4] |
Mas D C, Curien G, Robert G M, et al. A novel organization of ACT domains in allosteric enzymes revealed by the crystal structure of Arabidopsis aspartate kinase[J]. The Plant Cell Online,2006,18(7):1681~1692.
|
[5] |
Chen Z, Meyer W, Rappert S, et al. Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacteriumglutamicum for lysine production[J]. Applied and Environmental Microbiology,2011,77(13):4352−4360. doi: 10.1128/AEM.02912-10
|
[6] |
Kotaka M, Ren J, Lockyer M, et al. Structures of R-and T-state Escherichia coli aspartokinase III. Mechanisms of the allosteric transition and inhibition by lysine[J]. The Journal of Biological Chemistry,2006,281(42):31544−31552.
|
[7] |
Kikuchi Y, Kojima H, Tanaka T. Mutational analysis of the feedback sites of lysine-sensitive aspartokinase of Escherichia coli[J]. FEMS Microbiology Letters,2006,173(1):211−215.
|
[8] |
Dong X, Quinn P J, Wang X. Metabolic engineering of Escherichia coli and Corynebacteriumglutamicum for the production of L-threonine.[J]. Biotechnology Advances,2011,29(1):11−23. doi: 10.1016/j.biotechadv.2010.07.009
|
[9] |
Renaud D, David C, Robin A Y, et al. The many faces of aspartate kinases[J]. Archives of Biochemistry and Biophysics,2012,519(2):186−193. doi: 10.1016/j.abb.2011.10.016
|
[10] |
Yoshida A, Tomita T, Kurihara T, et al. Structural insight into concerted inhibition of α2β2-Type aspartate kinase from Corynebacterium glutamicum[J]. Journal of Molecular Biology,2007,368(2):521−536. doi: 10.1016/j.jmb.2007.02.017
|
[11] |
Curien G, Laurencin M, Mylène Robert-Genthon, et al. Allosteric monofunctional aspartate kinases from Arabidopsis[J]. 2007, 274(1): 164-176.
|
[12] |
Paris S, Viemon C, Curien G, et al. Mechanism of control of Arabidopsis thaliana aspartate kinase-homoserine dehydrogenase by threonine[J]. Journal of Biological Chemistry,2003,278(7):5361−5366. doi: 10.1074/jbc.M207379200
|
[13] |
Han C J, Fang L, Liu C L, et al. Construction of novel aspartokinase mutant A380I and its characterization by molecular dynamics simulation[J]. Molecules,2018,23(12):3379. doi: 10.3390/molecules23123379
|
[14] |
Tsujimoto M, Yoshida A, Shimizu T, et al. Aspartate kinase involved in 4-hydroxy-3-nitrosobenzamide biosynthesis in Streptomyces murayamaensis[J]. Journal of the Agricultural Chemical Society of Japan,2016,80(11):1−9.
|
[15] |
赵智, 刘阳剑, 王宇, 等. 抗反馈抑制的天冬氨酸激酶基因在钝齿棒杆菌中的表达[J]. 微生物学报,2005,45(4):530−533. doi: 10.3321/j.issn:0001-6209.2005.04.009
|
[16] |
秦天宇. 代谢工程改造谷氨酸棒杆菌生产L-甲硫氨酸[D]. 无锡: 江南大学, 2014.
|
[17] |
Shaul O, Galili G. Threonine overproduction in transgenic tobacco plants expressing a mutant desensitized aspartatekinase of Escherichia coli[J]. Plant Physiology,1992,100(3):1157−1163. doi: 10.1104/pp.100.3.1157
|
[18] |
Ohnishi J, Mitsuhashi S, Hayashi M, et al. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant[J]. Applied Microbiology and Biotechnology,2002,58(2):217−223. doi: 10.1007/s00253-001-0883-6
|
[19] |
Chen Z, Rappert S, Sun J, et al. Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production[J]. Journal of Biotechnology,2011,154(4):248−254. doi: 10.1016/j.jbiotec.2011.05.005
|
[20] |
Curien G, Laurencin M, Mylène R G, et al. Allosteric monofunctional aspartate kinases from arabidopsis[J]. FEBS Journal,2007,274(1):164−176. doi: 10.1111/j.1742-4658.2006.05573.x
|
[21] |
Yoshida A, Tomita T, Kuzuyama T, et al. Mechanism of concerted inhibition of α2β2-type hetero-oligomeric aspartate kinase from Corynebacterium glutamicum[J]. Journal of Biological Chemistry,2010,285(35):27477−27486. doi: 10.1074/jbc.M110.111153
|
[22] |
Han C J, Liu S M, Liu C L, et al. The mutant T379L of novel aspartokinase from Corynebacteriumpekinense: A combined experimental and molecular dynamics simulation study[J]. Process Biochemistry,2019,83:77−85. doi: 10.1016/j.procbio.2019.04.022
|
[23] |
陈志杰, 王鹏, 詹冬玲, 等. 北京棒杆菌天冬氨酸激酶突变体A380H的酶学性质[J]. 吉林大学学报(理学版),2017,55(5):1−8.
|
[24] |
张芷睿, 陈晨, 韩彩静, 等. 北京棒杆菌天冬氨酸激酶突变体Q316P的酶学性质[J]. 微生物学报,2018,58(5):842−850.
|
[25] |
Min W H, Li H Y, Li H M, et al. Characterization of aspartate kinase from Corynebacterium pekinense and the critical site of Arg169[J]. International Journal of Molecular Sciences,2015,16(12):28270−28284. doi: 10.3390/ijms161226098
|
[26] |
Li C C, Yang M J, Liu L, et al. Mechanistic insight into the allosteric regulation of Pseudomonas aeruginosa aspartate kinase[J]. Biochemical Journal,2018,475:1107−1119. doi: 10.1042/BCJ20170829
|
[27] |
Gao Y N, Fang L, Min W H, et al. Enzymatic characterization and molecular mechanism of novel aspartokinase mutant M372I/T379W from Corynebacterium pekinense[J]. RSC Advanes,2019:21344−21354.
|
[28] |
Kalachova T, Janda M, Šašek V, et al. Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant[J]. Annals of Botany,2020,125(5):5.
|
[29] |
魏丽茵, 吕天晓, 范甜, 等. 利用CRISPR/Cas9技术构建拟南芥IQM家族基因四突变体[J]. 科技视界,2020(12):166−168.
|
[30] |
魏贞, 韩彩静, 高云娜, 等. 北京棒杆菌新型天冬氨酸激酶双突变株Y198N/D201M的构建及酶学性质表征[J]. 食品科学,2020,41(18):127−133. doi: 10.7506/spkx1002-6630-20190724-321
|
1. |
马琳,祁琪,李雅轩,赵昕. 甜蜜素对果蝇繁殖生长及运动能力的影响. 首都师范大学学报(自然科学版). 2024(04): 36-41 .
![]() | |
2. |
严静,薛秋艳,王旸,陈汶意,谢诗晴,江津津,黎攀,杜冰. 发酵米荞对高脂肪秀丽隐杆线虫的降脂及抗氧化作用. 食品工业科技. 2023(06): 8-15 .
![]() | |
3. |
祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用. 山东大学学报(医学版). 2023(07): 19-26 .
![]() | |
4. |
文明明,毕洁,贺艳萍,戴煌,张威,舒在习,肖安红. 高糖饮食抑制后代雄性果蝇寿命和育性及其作用机制. 现代食品科技. 2022(10): 9-18 .
![]() |