MA Zhiguo, LIU Xiangcen, YUAN Chenyang, et al. Construction of Engineering Bacteria for Transforming Phytosterol to 22-hydroxy-23, 24-bisnorchola-1, 4-diene-3-ketone(HPD) and Optimization of Fermentation Medium[J]. Science and Technology of Food Industry, 2021, 42(15): 131−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120281.
Citation: MA Zhiguo, LIU Xiangcen, YUAN Chenyang, et al. Construction of Engineering Bacteria for Transforming Phytosterol to 22-hydroxy-23, 24-bisnorchola-1, 4-diene-3-ketone(HPD) and Optimization of Fermentation Medium[J]. Science and Technology of Food Industry, 2021, 42(15): 131−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120281.

Construction of Engineering Bacteria for Transforming Phytosterol to 22-hydroxy-23, 24-bisnorchola-1, 4-diene-3-ketone(HPD) and Optimization of Fermentation Medium

More Information
  • Received Date: January 03, 2021
  • Available Online: May 30, 2021
  • As an important steroid intermediate, 22-hydroxy-23, 24-bisnorchola-1, 4-diene-3-ketone (HPD) was the raw material for the synthesis of many Sebaceous drugs.We overexpressed 3-ketosteroid-Δ1-dehydrogenase (KstD) gene in Mycobacterium neoaurum DSM 1381, the purity of HPD in fermentation product was increased from 71% to 84%. On the basis of single factor selection, the yield of product HPD was taken as the measurement index, response surface method was used to optimize the fermentation medium, the quadratic regression equation for the change of each influencing factor was established. The final results showed that the most suitable fermentation medium composition conditions were corn steep liquor 9 g/L, NaNO3 1.8 g/L, glucose 6 g/L, and K2HPO4 2 g/L.Under this condition, the yield of HPD could reach 3.73 g/L when the concentration of phytosterol was 5 g/L, and the yield of HPD was nearly 2.7 times higher than Mycobacterium neoaurum DSM 1381, it had potential industrial application value.
  • [1]
    Donova MV, Egorova OV. Microbial steroid transformations: current state and prospects[J]. Applied Microbiology and Biotechnology,2012,94(6):1423−1447. doi: 10.1007/s00253-012-4078-0
    [2]
    Nassiri KN, Faramarzi MA. Recent developments in the fungal transformation of steroids[J]. Biocatal Biotransfor,2015,33(1):1−28.
    [3]
    Fernandez CL, Galan B, Garcia J. New insights on steriod biotechnology[J]. Frontiers in Microbiology,2018,9(958):1−15.
    [4]
    He XJ, Liu B, Wang GH, et al. Microbial metabolism of methyl protodioscin by Aspergillus niger culture-A new androstenedione producing way from steroid[J]. Journal of Steroid Biochemistry and Molecular Biology,2006,100(1):87−94.
    [5]
    王欣, 王枫. 植物固醇的研究新进展[J]. 国外医学,2007(2):98−101.
    [6]
    张娜, 郭庆启, 张岭. 植物固醇/固烷醇(酯)作为降低胆固醇功能性食品的研究进展[J]. 中国调味品,2010,35(10):45−47+51. [Zhang N, Guo Q Q, Zhang L. Research Progress of Phytosterols/Stanols (Esters) as Functional Foods for Lowering Cholesterol[J]. China Condiment,2010,35(10):45−47+51]. doi: 10.3969/j.issn.1000-9973.2010.10.006
    [7]
    金俊, 卢梦瑶, 厉秋岳, 等. 以甾醇为底物微生物法合成甾体类化合物的研究进展[J]. 食品研究与开发,2018,39(10):205−209. doi: 10.3969/j.issn.1005-6521.2018.10.038
    [8]
    杨顺楷, 杨亚力, 吴中柳, 等. 微生物发酵降解植物甾醇侧链生产17-酮甾体研究进展[J]. 生物加工过程,2010,8(5):69−77. doi: 10.3969/j.issn.1672-3678.2010.05.015
    [9]
    Yao K, Xu LQ, Wang FQ, et al. Characterization and engineering of 3-ketosteroid-delta (1)-dehydrogenase and 3-ketosteroid-9 alpha-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9 alpha-hydroxy-4-androstene-3, 17-dione through the catabolism of sterols[J]. Metabolic Engineering,2014,24:181−91. doi: 10.1016/j.ymben.2014.05.005
    [10]
    Boland E W. The effects of cortisone and adrenocorticotropic hormone (ACTH) on certain rheumatic diseases[J]. Calif Med,1950,72(6):405−14.
    [11]
    Toro A and Ambrus G. Oxidative decarboxxylation of 17(20)-dehydro-23, 24-dinorcholanoic acids[J]. Tetrahedron Letters,1990,31(24):3475−3476. doi: 10.1016/S0040-4039(00)97426-4
    [12]
    Chen DJ, Zhu BQ. Application of microbial transformation in modern pharmaceutical industry[J]. Chinese Journal of Antibiotics,2006,31(2):112−118.
    [13]
    徐慧静, 刘萍, 崔立迁, 等. 甾体激素药物的生物转化研究进展[J]. 生物加工过程,2019,17(5):542−550. doi: 10.3969/j.issn.1672-3678.2019.05.016
    [14]
    Zhang W, Shao M, Rao Z, et al. Bioconversion of 4-androstene-3, 17-dione to androst-1, 4-diene-3, 17-dione by recombinant Bacillus subtilis expressing ksdd gene encoding 3-ketosteroid-Delta1-dehydrogenase fromMycobacterium neoaurum JC-12[J]. Journal of Steroid Biochemistry and Molecular Biology,2013,135:36−42. doi: 10.1016/j.jsbmb.2012.12.016
    [15]
    Rohman A, Oosterwijk NV, Dijkstra BW. Purification, crystallization and preliminary X-ray crystallographic analysis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1[J]. Acta Crystallographica Section F-Structural Biology Communications,2012,68(5):551−556. doi: 10.1107/S1744309112011025
    [16]
    Choi KP, Yamashita M, Murooka Y, et al. Purification and Characterization of the 3-Ketosteroid-Δ1-Dehydrogenase ofArthrobacter simplex Produced in Streptomyces liuidans[J]. Journal of Biochemistry,1995,117(5):1043−1049. doi: 10.1093/oxfordjournals.jbchem.a124804
    [17]
    Molnár I, Choi KP, Yamashita M, et al. Molecular cloning, expression in Streptomyces livdans, and analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid-Δ1-dehydrogenase, 3-ketosteroid-Δ5-isomerase and a hypothetical regulatory protein[J]. Molecular microbiology,1995,15(5):895−905. doi: 10.1111/j.1365-2958.1995.tb02359.x
    [18]
    Geize RVD, Hessels GI, Gerwen RV, et al. Targeted disruption of the KstD gene encoding a 3-ketosteroid-Δ1-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1[J]. Applied and Environmental Microbiology,2000,66(5):2029−2036. doi: 10.1128/AEM.66.5.2029-2036.2000
    [19]
    Zhang RJ, Liu XC, Wang YS, et al. Identification, function, and application of 3-ketosteroid Δ1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons[J]. Microb Cell Fact,2018,17(1):77−93. doi: 10.1186/s12934-018-0916-9
    [20]
    Sonomoto K, Usui N, Tanaka A, et al. 9α-Hydroxylation of 4-androstene-3, 17-dione by gel-entrappedCorynebacterium sp. cells[J]. Applied Microbiology and Biotechnology,1983,17(4):203−210. doi: 10.1007/BF00510416
    [21]
    Geize Rvd, Hessels GI, Gerwen RV, et al. Molecular and functional characterization of kshA andkshB, encoding two components of 3-ketosteroid 9α-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1[J]. Molecular Microbiology,2002,45(4):1007−1018. doi: 10.1046/j.1365-2958.2002.03069.x
    [22]
    Sarmah U, Roy MK, Singh HD. Steroid transformations by a strain of Arthrobacter oxydans incapable of steroid ring degradation[J]. Journal of Basic Microbiology,1989,29(2):85−92. doi: 10.1002/jobm.3620290206
    [23]
    Xu LQ, Liu YJ, Yao K, et al. Unraveling and engineering the production of 23, 24-bisnorcholenic steroids in sterol metabolism[J]. Scientific Reports,2016,6(1):269−293.
    [24]
    Imada Y T K. Process for producing steroidal alcohols: US, 4223091[P]. 1980.
    [25]
    Liu XC, Zhang RJ, Bao ZW, et al. Biotransformation of Phytosterols to Androst-1, 4-Diene-3, 17-Dione by Mycobacterium sp ZFZ Expressing 3-Ketosteroid-∆1-Dehydrogenase[J]. Catalysts,2020,10(6):663−673. doi: 10.3390/catal10060663
    [26]
    张乐乐. Mycobacterium neoaurum高效表达载体的构建及其在合成雄甾-1, 4-二烯-3, 17-二酮中的应用[D]. 无锡: 江南大学, 2015.
    [27]
    姚抗. 分枝杆菌甾醇转化机制的解析及其代谢工程改造应用于制备重要甾药中间体的研究[D]. 上海: 华东理工大学, 2014.

    Y
    [28]
    冯建勋, 陈瑞, 高兴强, 等. Tween-80和羟丙基-β-环糊精对分枝杆菌转化植物甾醇代谢途径的影响[J]. 中国医药工业杂志,2016,47(1):25−30.
    [29]
    李珍柱. 三种类黄酮纯度标准物质的研制[D]. 重庆: 西南大学, 2018.
    [30]
    曹慧锦, 马治国, 刘相岑, 等. 降解植物甾醇9α-羟基雄烯二酮工程菌株构建及发酵工艺优化[J]. 食品工业科技,2020,41(14):101−107.
    [31]
    柳相鹤, 张瑞婕, 赵树欣, 等. Mycobacterium sp. BFZ304转化植物甾醇产9α-羟基雄烯二酮培养基的响应面优化[J]. 食品工业科技,2017,37(16):172−177.
    [32]
    刘相岑, 郝晓蔚, 张瑞婕, 等. 降解植物甾醇产雄甾-1, 4-二烯-3, 17-二酮工程菌株的构建及转化培养基优化[J]. 食品工业科技,2018,39(18):110−116.
    [33]
    刘波, 邬应龙, 张霞, 等. 红曲霉固态发酵产木聚糖酶培养基的响应面优化[J]. 食品工业科技,2014,35(1):254−258.
    [34]
    杨英. 徽生物转化植物甾醇制备甾体药物关健中间体研究[D]. 合肥: 合肥工业大学, 2009: 64−67.
    [35]
    欧阳薇, 乐龙, 王志祥, 等. 超声波优化栀子苷提取的工艺研究[J]. 中国药物警戒,2011(3):154−157. doi: 10.3969/j.issn.1672-8629.2011.03.008
    [36]
    Xiong L B, Liu H H, Xu L Q, et al. Improving the production of 22-hydroxy-23, 24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes[J]. Microbial Cell Factories,2017,16(1):89. doi: 10.1186/s12934-017-0705-x
  • Cited by

    Periodical cited type(6)

    1. 杨蕾,冯洪涛,何雪峰,杨乾栩,蒋梦菲,张涛. 基于MFA的消费者与专家卷烟抽吸感知及风味感知分析. 中国市场. 2024(28): 99-102 .
    2. 常晓敏,赵慧敏,张悦,刘佳妮,李玄烨,李晓龙,初柏君,王翔宇,朱保庆. 桌布法结合极化投影地图法剖析葵花籽油香味特征. 食品安全质量检测学报. 2023(13): 184-192 .
    3. 侯姣靓. XLSTAT在感官评价数据分析中的应用. 上海轻工业. 2023(03): 130-133 .
    4. 单冰淇,刘松昱,王春光,游睿晗,宋昊,钟葵,史波林,朱保庆. 开放式提问调查在食品研究与开发中的研究现状. 食品工业科技. 2022(12): 468-474 . 本站查看
    5. 陈亦新,兰义宾,问亚琴,刘雅冉,陈奎汛,宋昊,朱保庆. 自选特性排序剖面法在食品研究与开发中的应用及研究现状. 食品工业科技. 2022(13): 475-483 . 本站查看
    6. 苏庆宇,常晓敏,刘雅冉,许晓青,李佳泽,朱雨萱,宋昊,朱保庆. 投影地图法在食品研究与开发中的研究现状. 食品工业科技. 2022(16): 390-399 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (334) PDF downloads (36) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return