Citation: | XIE Chunping, ZHAO Liangzhong, LI Ming, et al. Optimization of Enzymatic Hydrolysis of Soybean Dregs Based on Genetic Algorithm-Neural Network and Its Kinetics[J]. Science and Technology of Food Industry, 2021, 42(16): 213−220. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120261. |
[1] |
祝义伟, 龙勃, 龙勇, 等. 豆渣中营养成分的检测及其含量声称[J]. 食品研究与开发,2017,38(8):117−120. doi: 10.3969/j.issn.1005-6521.2017.08.027
|
[2] |
姜慧燕, 邹礼根, 翁丽萍, 等. 豆渣营养成分分析及蛋白质营养价值评价[J]. 食品工业,2020,41(6):325−328.
|
[3] |
方冬冬, 李长乐, 师园园, 等. 豆渣膳食纤维研究与综合利用[J]. 粮食加工,2018,43(2):62−64.
|
[4] |
Elleuch M, Bedigian D, Roiseux O, et al. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review[J]. Food Chemistry,2011,124(2):411−421. doi: 10.1016/j.foodchem.2010.06.077
|
[5] |
Mateos-Aparicio P, Mateos-Peinado C, Ruperez P. High hydrostatic pressure improves the functionality of dietary fiber in okara by-product from soybean[J]. Innovative Food Science and Emerging Technologies,2010,11:445−450. doi: 10.1016/j.ifset.2010.02.003
|
[6] |
赵爽, 庞沐嘉. 大豆豆渣再利用现状概述[J]. 食品安全导刊,2018(24):169−170.
|
[7] |
Weng C V, Liu S Q. Biovalorisation of okara (soybean residue)for food and nutrition[J]. Trends in Food Science and Technology,2016,52:139−147. doi: 10.1016/j.jpgs.2016.04.011
|
[8] |
李鑫宇, 孙冰玉, 张光, 等. 豆渣的综合利用及研究进展[J]. 大豆科技,2018(4):35−42. doi: 10.3969/j.issn.1674-3547.2018.04.008
|
[9] |
姜慧燕, 翁丽萍. 豆渣综合利用的主要途径[J]. 杭州农业与科技,2019(6):21−24.
|
[10] |
齐惠. 挤压-酶法联合制备豆渣水溶性膳食纤维及其性质研究[D]. 哈尔滨: 东北农业大学, 2016.
|
[11] |
李建周, 陈晓华, 罗思诗. 豆渣中水不溶性膳食纤维的提取及性质研究[J]. 食品研究与开发,2017,38(7):29−33. doi: 10.3969/j.issn.1005-6521.2017.07.007
|
[12] |
姚磊, 陈昊, 孙树坤, 等. 响应面法优化豆渣纤维酶解多糖制备工艺及其抗氧化活性研究[J]. 大豆科技,2018(6):6−15. doi: 10.3969/j.issn.1674-3547.2018.06.002
|
[13] |
刘帅, 聂乾忠, 方媛媛. 双酶法水解发酵豆渣制备大豆多肽的研究[J]. 食品科技,2016,41(2):108−112.
|
[14] |
Han Y T, Xu J F, Zhao Z M, et al. Analysis of enzymolysis process kinetics and estimation of the resource conversion efficiency to corn cobs with alkali soaking, water and acid steam explosion pretreatments[J]. Bioresource Technology,2018,264:391−394. doi: 10.1016/j.biortech.2018.06.045
|
[15] |
Makarova E I, Budaeva V V, Kukhlenko A A, et al. Enzyme kinetics of cellulose hydrolysis of Miscanthus and oat hulls[J]. 3 Biotech,2017,7(5):317. doi: 10.1007/s13205-017-0964-6
|
[16] |
王兴吉, 刘文龙, 闫宜江. 纤维素酶水解小麦秸秆的酶解动力学[J]. 江苏农业科学,2019,47(2):309−311.
|
[17] |
李志西, 杜双奎. 试验优化设计与统计分析[M]. 北京: 科学出版社, 2010.
|
[18] |
Tan M C, Chin N L, Yusof Y A. A Box–Behnken design for determining the optimum experimental condition of cake batter mixing[J]. Food & Bioprocess Technology,2012,5(3):972−982.
|
[19] |
Mb A, Mmt A, Sne A, et al. Optimization of effective parameters in cold pasteurization of pomegranate juice by response surface methodology and evaluation of physicochemical characteristics[J]. LWT,2021:147.
|
[20] |
Musa K H, Abdullah A, Al-Haiqi A. Determination of DPPH free radical scavenging activity: Application of artificial neural networks[J]. Food Chemistry,2016,194(Mar. 1):705−711.
|
[21] |
薛宏坤, 刘成海, 刘钗, 等. 响应面法和遗传算法-神经网络模型优化微波萃取蓝莓中花青素工艺[J]. 食品科学,2018,39(16):280−288. doi: 10.7506/spkx1002-6630-201816040
|
[22] |
尹乐斌, 邓鹏, 何平, 等. 基于遗传算法-神经网络及响应面法优化龙牙百合总黄酮提取工艺[J]. 食品研究与开发,2021,42(7):105−113.
|
[23] |
Väljamäe Priit, Kipper Kalle, Pettersson Göran, et al. Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics[J]. Biotechnology and Bioengineering, 2010, 84(2): 254-257.
|
[24] |
蒋丹萍, 张洋, 路朝阳, 等. 秸秆类生物质酶解动力学与光合生物产氢特性研究[J]. 农业机械学报,2015,46(5):196−201. doi: 10.6041/j.issn.1000-1298.2015.05.027
|
[25] |
Zhang Y, Xu J L, Qi W, et al. A Fractal-like kinetic equation to investigate temperature effect on cellulose hydrolysis by free and immobilized cellulase[J]. Applied Biochemistry & Biotechnology,2012,168(1):144−153.
|
[26] |
赵凯, 许鹏举, 谷广烨. 3, 5-二硝基水杨酸比色法测定还原糖含量的研究[J]. 食品科学,2008(8):534−536. doi: 10.3321/j.issn:1002-6630.2008.08.127
|
[27] |
黄群, 杨万根, 余佶, 等. 杜仲籽粕蛋白酶解制备抗氧化肽工艺优化[J]. 食品科学,2013,34(17):205−209. doi: 10.7506/spkx1002-6630-201317044
|
[28] |
王镜岩, 朱圣庚, 徐长法. 生物化学教程[M]. 北京: 高等教育出版社, 2008.
|
[29] |
芦鑫, 朱巧梅, 孙强, 等. 高温压榨花生饼粕酶法制备抗氧化肽的研究[J]. 中国粮油学报,2013,28(3):99−104. doi: 10.3969/j.issn.1003-0174.2013.03.019
|
[30] |
吕小京, 操德群, 徐年军. 响应面试验优化酶解法制备海洋微藻微拟球藻抗氧化肽工艺[J]. 食品科学,2018,39(6):183−188. doi: 10.7506/spkx1002-6630-201806029
|
[31] |
Pan M, Jiang T S, Pan J L. Antioxidant activities of rapeseed protein hydrolysates[J]. Food and Bioprocess Technology,2011,4(7):1144−1152. doi: 10.1007/s11947-009-0206-y
|
[32] |
邵志芳, 皇甫洁, 刘文颖, 等. 基于水解产物抗氧化活性分析乳清蛋白粉酶解工艺优化[J/OL]. 食品工业科技: 1−11[2020-12-25]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200312.0949.006.html.
|
[33] |
路志芳, 张光杰, 徐志勇. 酶法提取豆渣中水溶性膳食纤维工艺研究[J]. 湖北农业科学,2015,54(9):2193−2196.
|
[34] |
陈红梅, 谢翎. 响应面法优化半枝莲黄酮提取工艺及体外抗氧化性分析[J]. 食品科学,2016,37(2):45−50. doi: 10.7506/spkx1002-6630-201602008
|
[35] |
张黎骅, 张文, 吕珍珍, 等. 响应面法优化酒糟微波间歇干燥工艺[J]. 农业工程学报,2011,27(3):369−374. doi: 10.3969/j.issn.1002-6819.2011.03.067
|
[36] |
闵钟熳, 高路, 高育哲, 等. 黑曲霉发酵法制备米糠粕可溶性膳食纤维工艺优化及其理化分析[J]. 食品科学,2018,39(2):112−118. doi: 10.7506/spkx1002-6630-201802018
|
[37] |
Yatmaz E, Germe M, Erkan S B, et al. Modeling of ethanol fermentation from carob extract-based medium by using Saccharomyces cerevisiae in the immobilized-cell stirred tank bioreactor[J]. Biomass Conversion and Biorefinery,2020(prepublish).
|
[38] |
Cheok C Y, Chin N L, Yusof Y A, et al. Optimization of total phenolic content extracted from Garcinia mangostana Linn. hull using response surface methodology versus artificial neural network[J]. Industrial Crops & Products,2012,40(none):247−253.
|
[39] |
E C hizoo, Onukwuli O D, Ofoefule A U. Characterization and oxidation modeling of oils from Prunus amygdalus, Dyacrodes edulis and Chrysophyllum albidium[J]. Industrial Crops & Products,2018,128:298−307.
|
1. |
阮斯佳,赵欣欣,王燕,柳李旺,屠康,彭菁. 基于响应面和人工神经网络-遗传算法优化鲜切萝卜光动力杀菌工艺. 南京农业大学学报. 2023(06): 1196-1205 .
![]() | |
2. |
贺弘扬. 融合径向基神经网络和遗传算法的翻板钢水闸门优化. 粘接. 2022(12): 133-136 .
![]() |