XIE Chunping, ZHAO Liangzhong, LI Ming, et al. Optimization of Enzymatic Hydrolysis of Soybean Dregs Based on Genetic Algorithm-Neural Network and Its Kinetics[J]. Science and Technology of Food Industry, 2021, 42(16): 213−220. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120261.
Citation: XIE Chunping, ZHAO Liangzhong, LI Ming, et al. Optimization of Enzymatic Hydrolysis of Soybean Dregs Based on Genetic Algorithm-Neural Network and Its Kinetics[J]. Science and Technology of Food Industry, 2021, 42(16): 213−220. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120261.

Optimization of Enzymatic Hydrolysis of Soybean Dregs Based on Genetic Algorithm-Neural Network and Its Kinetics

More Information
  • Received Date: December 29, 2020
  • Available Online: June 21, 2021
  • Objective: The optimal process conditions for the solution of legumes by cellulase enzymes were obtained, and a model of the electrodynamics of bean slag enzymes was established. Methods: Based on the single-factor experiment, the effects of pH, cellulase addition, enzymatic temperature and enzyme solution time on reduced sugar production were studied by using the response surface method (RSM) and the genetic algorithm-neural network model (GA-ANN). Results: Genetic algorithm-neural network optimization of the bean slag enzyme solution process conditions were: pH5.2, cellulase addition 4.4%, enzymatic temperature 52 ℃, enzymatic time 3.2 h, under these conditions reduced sugar production was 2.65 g/kg, higher than the results of response surface optimization (reduced sugar production was 2.54 g/kg). The kinetics parameter k0 was 0.537 and the scropular dimensionality h was 0.153, according to the experimental data and the dynamic model, the fit was 0.9827, and the fitting effect was good. Conclusion: In this paper, the soybean slag enzyme solution process was optimized by using the response surface method and the genetic algorithm-neural network model, and the soybean slag enzyme solution dynamics model was established, which could provide theoretical reference for the soybean slag enzyme solution process.
  • [1]
    祝义伟, 龙勃, 龙勇, 等. 豆渣中营养成分的检测及其含量声称[J]. 食品研究与开发,2017,38(8):117−120. doi: 10.3969/j.issn.1005-6521.2017.08.027
    [2]
    姜慧燕, 邹礼根, 翁丽萍, 等. 豆渣营养成分分析及蛋白质营养价值评价[J]. 食品工业,2020,41(6):325−328.
    [3]
    方冬冬, 李长乐, 师园园, 等. 豆渣膳食纤维研究与综合利用[J]. 粮食加工,2018,43(2):62−64.
    [4]
    Elleuch M, Bedigian D, Roiseux O, et al. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review[J]. Food Chemistry,2011,124(2):411−421. doi: 10.1016/j.foodchem.2010.06.077
    [5]
    Mateos-Aparicio P, Mateos-Peinado C, Ruperez P. High hydrostatic pressure improves the functionality of dietary fiber in okara by-product from soybean[J]. Innovative Food Science and Emerging Technologies,2010,11:445−450. doi: 10.1016/j.ifset.2010.02.003
    [6]
    赵爽, 庞沐嘉. 大豆豆渣再利用现状概述[J]. 食品安全导刊,2018(24):169−170.
    [7]
    Weng C V, Liu S Q. Biovalorisation of okara (soybean residue)for food and nutrition[J]. Trends in Food Science and Technology,2016,52:139−147. doi: 10.1016/j.jpgs.2016.04.011
    [8]
    李鑫宇, 孙冰玉, 张光, 等. 豆渣的综合利用及研究进展[J]. 大豆科技,2018(4):35−42. doi: 10.3969/j.issn.1674-3547.2018.04.008
    [9]
    姜慧燕, 翁丽萍. 豆渣综合利用的主要途径[J]. 杭州农业与科技,2019(6):21−24.
    [10]
    齐惠. 挤压-酶法联合制备豆渣水溶性膳食纤维及其性质研究[D]. 哈尔滨: 东北农业大学, 2016.
    [11]
    李建周, 陈晓华, 罗思诗. 豆渣中水不溶性膳食纤维的提取及性质研究[J]. 食品研究与开发,2017,38(7):29−33. doi: 10.3969/j.issn.1005-6521.2017.07.007
    [12]
    姚磊, 陈昊, 孙树坤, 等. 响应面法优化豆渣纤维酶解多糖制备工艺及其抗氧化活性研究[J]. 大豆科技,2018(6):6−15. doi: 10.3969/j.issn.1674-3547.2018.06.002
    [13]
    刘帅, 聂乾忠, 方媛媛. 双酶法水解发酵豆渣制备大豆多肽的研究[J]. 食品科技,2016,41(2):108−112.
    [14]
    Han Y T, Xu J F, Zhao Z M, et al. Analysis of enzymolysis process kinetics and estimation of the resource conversion efficiency to corn cobs with alkali soaking, water and acid steam explosion pretreatments[J]. Bioresource Technology,2018,264:391−394. doi: 10.1016/j.biortech.2018.06.045
    [15]
    Makarova E I, Budaeva V V, Kukhlenko A A, et al. Enzyme kinetics of cellulose hydrolysis of Miscanthus and oat hulls[J]. 3 Biotech,2017,7(5):317. doi: 10.1007/s13205-017-0964-6
    [16]
    王兴吉, 刘文龙, 闫宜江. 纤维素酶水解小麦秸秆的酶解动力学[J]. 江苏农业科学,2019,47(2):309−311.
    [17]
    李志西, 杜双奎. 试验优化设计与统计分析[M]. 北京: 科学出版社, 2010.
    [18]
    Tan M C, Chin N L, Yusof Y A. A Box–Behnken design for determining the optimum experimental condition of cake batter mixing[J]. Food & Bioprocess Technology,2012,5(3):972−982.
    [19]
    Mb A, Mmt A, Sne A, et al. Optimization of effective parameters in cold pasteurization of pomegranate juice by response surface methodology and evaluation of physicochemical characteristics[J]. LWT,2021:147.
    [20]
    Musa K H, Abdullah A, Al-Haiqi A. Determination of DPPH free radical scavenging activity: Application of artificial neural networks[J]. Food Chemistry,2016,194(Mar. 1):705−711.
    [21]
    薛宏坤, 刘成海, 刘钗, 等. 响应面法和遗传算法-神经网络模型优化微波萃取蓝莓中花青素工艺[J]. 食品科学,2018,39(16):280−288. doi: 10.7506/spkx1002-6630-201816040
    [22]
    尹乐斌, 邓鹏, 何平, 等. 基于遗传算法-神经网络及响应面法优化龙牙百合总黄酮提取工艺[J]. 食品研究与开发,2021,42(7):105−113.
    [23]
    Väljamäe Priit, Kipper Kalle, Pettersson Göran, et al. Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics[J]. Biotechnology and Bioengineering, 2010, 84(2): 254-257.
    [24]
    蒋丹萍, 张洋, 路朝阳, 等. 秸秆类生物质酶解动力学与光合生物产氢特性研究[J]. 农业机械学报,2015,46(5):196−201. doi: 10.6041/j.issn.1000-1298.2015.05.027
    [25]
    Zhang Y, Xu J L, Qi W, et al. A Fractal-like kinetic equation to investigate temperature effect on cellulose hydrolysis by free and immobilized cellulase[J]. Applied Biochemistry & Biotechnology,2012,168(1):144−153.
    [26]
    赵凯, 许鹏举, 谷广烨. 3, 5-二硝基水杨酸比色法测定还原糖含量的研究[J]. 食品科学,2008(8):534−536. doi: 10.3321/j.issn:1002-6630.2008.08.127
    [27]
    黄群, 杨万根, 余佶, 等. 杜仲籽粕蛋白酶解制备抗氧化肽工艺优化[J]. 食品科学,2013,34(17):205−209. doi: 10.7506/spkx1002-6630-201317044
    [28]
    王镜岩, 朱圣庚, 徐长法. 生物化学教程[M]. 北京: 高等教育出版社, 2008.
    [29]
    芦鑫, 朱巧梅, 孙强, 等. 高温压榨花生饼粕酶法制备抗氧化肽的研究[J]. 中国粮油学报,2013,28(3):99−104. doi: 10.3969/j.issn.1003-0174.2013.03.019
    [30]
    吕小京, 操德群, 徐年军. 响应面试验优化酶解法制备海洋微藻微拟球藻抗氧化肽工艺[J]. 食品科学,2018,39(6):183−188. doi: 10.7506/spkx1002-6630-201806029
    [31]
    Pan M, Jiang T S, Pan J L. Antioxidant activities of rapeseed protein hydrolysates[J]. Food and Bioprocess Technology,2011,4(7):1144−1152. doi: 10.1007/s11947-009-0206-y
    [32]
    邵志芳, 皇甫洁, 刘文颖, 等. 基于水解产物抗氧化活性分析乳清蛋白粉酶解工艺优化[J/OL]. 食品工业科技: 1−11[2020-12-25]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200312.0949.006.html.
    [33]
    路志芳, 张光杰, 徐志勇. 酶法提取豆渣中水溶性膳食纤维工艺研究[J]. 湖北农业科学,2015,54(9):2193−2196.
    [34]
    陈红梅, 谢翎. 响应面法优化半枝莲黄酮提取工艺及体外抗氧化性分析[J]. 食品科学,2016,37(2):45−50. doi: 10.7506/spkx1002-6630-201602008
    [35]
    张黎骅, 张文, 吕珍珍, 等. 响应面法优化酒糟微波间歇干燥工艺[J]. 农业工程学报,2011,27(3):369−374. doi: 10.3969/j.issn.1002-6819.2011.03.067
    [36]
    闵钟熳, 高路, 高育哲, 等. 黑曲霉发酵法制备米糠粕可溶性膳食纤维工艺优化及其理化分析[J]. 食品科学,2018,39(2):112−118. doi: 10.7506/spkx1002-6630-201802018
    [37]
    Yatmaz E, Germe M, Erkan S B, et al. Modeling of ethanol fermentation from carob extract-based medium by using Saccharomyces cerevisiae in the immobilized-cell stirred tank bioreactor[J]. Biomass Conversion and Biorefinery,2020(prepublish).
    [38]
    Cheok C Y, Chin N L, Yusof Y A, et al. Optimization of total phenolic content extracted from Garcinia mangostana Linn. hull using response surface methodology versus artificial neural network[J]. Industrial Crops & Products,2012,40(none):247−253.
    [39]
    E C hizoo, Onukwuli O D, Ofoefule A U. Characterization and oxidation modeling of oils from Prunus amygdalus, Dyacrodes edulis and Chrysophyllum albidium[J]. Industrial Crops & Products,2018,128:298−307.
  • Cited by

    Periodical cited type(2)

    1. 阮斯佳,赵欣欣,王燕,柳李旺,屠康,彭菁. 基于响应面和人工神经网络-遗传算法优化鲜切萝卜光动力杀菌工艺. 南京农业大学学报. 2023(06): 1196-1205 .
    2. 贺弘扬. 融合径向基神经网络和遗传算法的翻板钢水闸门优化. 粘接. 2022(12): 133-136 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (260) PDF downloads (34) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return