LI Xuehong, LI Shugang, SHI Gangpeng, et al. Effects of Growth Environment on Bacterial Community Diversity of Procambarus clarkia[J]. Science and Technology of Food Industry, 2021, 42(16): 91−98. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120211.
Citation: LI Xuehong, LI Shugang, SHI Gangpeng, et al. Effects of Growth Environment on Bacterial Community Diversity of Procambarus clarkia[J]. Science and Technology of Food Industry, 2021, 42(16): 91−98. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120211.

Effects of Growth Environment on Bacterial Community Diversity of Procambarus clarkia

More Information
  • Received Date: December 24, 2020
  • Available Online: June 17, 2021
  • In order to explore the effects of growth environment on the bacterial community diversity of Procambarus clarkia, we used Illumina miseq sequencing technology to sequence the tail meat of Procambarus clarkii, the culture water and the soil around the culture environment, and analyzed the correlation between the meat and the growth environment of Procambarus clarkii. The results showed that the diversity of Proteobacteria, Bacteria and Proteobacteria were higher than that of Proteobacteria and Bacteria in water. The average relative abundance of Deta Proteobacteria and Delta Proteobacteria were higher in crayfish tail meat, soil and water, but there was no common dominant flora at the family and genus level. The results of PICRUSt2 metabolic function prediction showed that the metabolic pathway abundance of three groups of samples was the highest in aerobic respiration (I), fatty acid synthesis (fat acid synthesis), amino acid biosynthesis (amino acid synthesis) and nucleoside sugar metabolism pathway (nucleotide sugar metabolism). The results of the study further explained the correlation and difference between the growth environment and the microbial community structure of Procambarus clarkia.
  • [1]
    2020中国小龙虾产业发展报告全文发布[J]. 水产科技情报, 2020, 47(4): 229.
    [2]
    叶建勇, 唐金玉, 丁辰龙, 等. 基于高通量测序的克氏原螯虾肠道及其养殖环境菌群结构分析[J]. 青岛农业大学学报(自然科学版),2020,37(2):129−134.
    [3]
    Moriarty D J W. The role of microorganisms in aquaculture ponds[J]. Aquaculture,1997,151(1-4):333−349. doi: 10.1016/S0044-8486(96)01487-1
    [4]
    Sun Y, Han W, Liu J, et al. Bacterial community compositions of crab intestine, surrounding water, and sediment in two differentfeeding modes of Eriocheir sinensis[J]. Aquaculture Reports,2020:16.
    [5]
    秦伟, 周鑫, 周文全, 等. 精养克氏原螯虾池塘底泥微生物群落特征分析[J]. 南方农业学报,2015,46(12):2209−2216. doi: 10.3969/j:issn.2095-1191.2015.12.2209
    [6]
    王春忠, 林国荣, 严涛, 等. 长毛对虾海水养殖环境以及虾肠道微生物群落结构研究[J]. 水产学报,2014,38(5):706−712.
    [7]
    倪治明. 浙北地区餐饮业小龙虾重点危害因子调查及风险评估[D]. 杭州: 浙江大学, 2013.
    [8]
    李兵兵, 刘纯成, 侯海燕, 等. 淮安地区小龙虾及其外环境中致病菌分布规律和耐药性分析[J]. 食品安全质量检测学报,2016(7):3530−3534.
    [9]
    Caporaso J G, Paszkiewicz K, Field D, et al. The Western English Channel contains a persistent microbial seed bank[J]. The ISME Journal,2012,6(2):1089−1093.
    [10]
    张赫宇, 杨波, 罗瑞明, 等. 高通量测序分析冷鲜滩羊肉储藏过程中的细菌群落多样性[J]. 食品工业科技,2016,37(13):177−182.
    [11]
    Jerez C A. The use of genomics, proteomics and other OMICS technologies for the global understanding of biominingmicroorganisms[J]. Hydrometallurgy,2008,94(1-4):162−169. doi: 10.1016/j.hydromet.2008.05.032
    [12]
    Pajarillo E A B, Chae J P, Balolong M P, et al. Characterization of the fecal microbial communities of duroc pigs using 16S rRNA gene pyrosequencing[J]. Asian-Australasian Journal of Animal Sciences,2015,28(4):584−591. doi: 10.5713/ajas.14.0651
    [13]
    袁钰, 李静, 林少华, 等. 基于16S rDNA高通量测序技术分析北京豆汁儿微生物多样性和功能预测的研究[J]. 食品工业科技,2020,41(2):95−100.
    [14]
    黄锦. 不同施肥模式下稻-克氏原螯虾养殖田块水体、土壤和肠道微生物的研究[D]. 上海: 上海海洋大学, 2019.
    [15]
    汤纯, 诸永志, 吴海虹, 等. 基于传统培养和宏基因组测序分析泗洪小龙虾不同部位的菌群多样性[J]. 肉类研究,2019,33(10):44−50.
    [16]
    伍一宁. CO2浓度升高对洪河自然保护区中小型土壤动物及微生物群落生态影响研究[D]. 哈尔滨: 东北林业大学, 2019.
    [17]
    Zhang M, Liu W, Nie X, et al. Molecular analysis of bacterial communities in biofilms of a drinking water clearwell[J]. Microbes & Environments,2012,27(4):443−448.
    [18]
    Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics,2011,27(16):2194−2200. doi: 10.1093/bioinformatics/btr381
    [19]
    Qiong W, M G G, M T J, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology,2007,73(16):5261−5267. doi: 10.1128/AEM.00062-07
    [20]
    Liu Z, Li J, Huang T, et al. Comparison of the bacterial communities in home-made Nanfengyancai with and without salt[J]. Food Research International,2019,125:108509.1−108509.12.
    [21]
    Langille M, Zaneveld J, Caporaso J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology,2013,31(9):814−821. doi: 10.1038/nbt.2676
    [22]
    朱旭. 秸秆还田与投食对稻虾共作系统土壤硝化作用及微生物的影响[D]. 武汉: 华中农业大学, 2020.
    [23]
    李可, 郑天凌, 田蕴, 等. 南美白对虾肠道微生物群落的分子分析[J]. 微生物学报,2007(4):649−653. doi: 10.3321/j.issn:0001-6209.2007.04.016
    [24]
    夏海峰, 杜宗军, 陈冠军. 刺参肠道及养殖池塘底泥微生物多样性的比较研究[J]. 海洋湖沼通报,2015(4):105−110.
    [25]
    杜世聪, 黄雷, 杨坤杰, 等. 凡纳滨对虾健康状态分化前后养殖水体浮游细菌群落的比较[J]. 生态学杂志,2019,38(8):2456−2465.
    [26]
    王贤丰, 赵艳飞, 宋志飞, 等. 应用高通量测序技术分析拟穴青蟹肠道及其养殖环境菌群结构[J]. 中国水产科学,2017,24(6):1245−1253.
    [27]
    孙振丽, 宣引明, 张皓, 等. 南美白对虾养殖环境及其肠道细菌多样性分析[J]. 中国水产科学,2016,23(3):594−605.
    [28]
    刘晓畅, 罗永康. 水产品贮运过程品质预测技术研究进展[J]. 中国渔业质量与标准,2016,6(2):1−6.
    [29]
    杨宪时, 许钟, 肖琳琳. 水产食品特定腐败菌与货架期的预测和延长[J]. 水产学报,2004(1):106−111.
    [30]
    张爱萍, 刘翔, 李永才, 等. 水产品储运过程中的防腐保鲜[J]. 包装与食品机械,2009,27(5):116−118. doi: 10.3969/j.issn.1005-1295.2009.05.032
    [31]
    邓灵, 赵康, 夏开, 等. 小龙虾(Procambarus clarkii)加工前后优势腐败菌的分离与鉴定[J]. 食品工业科技,2020,41(18):100−104.
    [32]
    江杨阳, 杨水兵, 余海霞, 等. 基于培养基法和高通量测序法分析冷藏小龙虾优势腐败菌[J]. 食品科学,2019,40(16):130−136. doi: 10.7506/spkx1002-6630-20180718-229
    [33]
    谢丽丹, 李蕾蕾, 王素英, 等. 低温贮藏南美白对虾特定腐败菌的分离鉴定及腐败能力分析[J]. 食品与发酵工业,2016,42(3):67−72.
    [34]
    Sahna D, Martin X K A, Tuni D S, et al. Identification of potential spoilage bacteria in farmed shrimp (Litopenaeus vannamei): Application of relative rate of spoilage models in shelf life-prediction[J]. LWT- Food Science and Technology,2018,97:295−301. doi: 10.1016/j.lwt.2018.07.006
    [35]
    Powell S M, Tamplin M L. Microbial communities on Australian modified atmosphere packaged Atlantic salmon[J]. Food Microbiology,2012,30(1):226−232. doi: 10.1016/j.fm.2011.10.002
    [36]
    Chen Y, Tian W, Shao Y, et al. Miscanthus cultivation shapes rhizosphere microbial community structure and function as assessed by Illumina MiSeq sequencing combined with PICRUSt and FUNGUIld analyses[J]. Archives of Microbiology,2020,202(5):1157−1171. doi: 10.1007/s00203-020-01830-1
    [37]
    杨盼, 翟亚萍, 赵祥, 等. 丛枝菌根真菌和根瘤菌互作对苜蓿根际土壤细菌群落结构的影响及PICRUSt功能预测分析[J]. 微生物学通报,2020,47(11):3868−3879.
    [38]
    张哲, 杨章武, 葛辉, 等. 凡纳滨对虾育苗水体中三种生物絮团的菌群多样性及Tax4Fun基因功能预测分析[J]. 水生生物学报,2019,43(4):786−796. doi: 10.7541/2019.093
  • Cited by

    Periodical cited type(2)

    1. 燕欣悦,胡风庆,宁崇,李慧宇,李芳,郭崇婷. 电子束辐照技术对食品品质的影响及在食品中的应用研究进展. 食品与机械. 2025(02): 216-225 .
    2. 侯港华,丁哲. 新型食品加工技术对食品质量的影响分析. 中外食品工业. 2024(20): 7-9 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (235) PDF downloads (23) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return