WANG Xuedong, LI Ya, DAI Taotao, et al. Study on Preparation and Characterization of Pectin/poly-m-phenylenediamine Gel Bead and Its Adsorption Performance on Lead (II)[J]. Science and Technology of Food Industry, 2021, 42(15): 85−95. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120181.
Citation: WANG Xuedong, LI Ya, DAI Taotao, et al. Study on Preparation and Characterization of Pectin/poly-m-phenylenediamine Gel Bead and Its Adsorption Performance on Lead (II)[J]. Science and Technology of Food Industry, 2021, 42(15): 85−95. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120181.

Study on Preparation and Characterization of Pectin/poly-m-phenylenediamine Gel Bead and Its Adsorption Performance on Lead (II)

More Information
  • Received Date: December 20, 2020
  • Available Online: June 01, 2021
  • The pectin bead was prepared from low-ester pectin and CaCl2 by ion crosslinking method, and then novel pectin/poly-m-phenylenediamine gel bead was prepared by assembling poly-m-phenylenediamine on the surface of pectin gel beads and used for lead (II) adsorption. The structure of pectin/poly-m-phenylenediamine gel bead was characterized by fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), specific surface area and porosity analysis (BET) and energy dispersive X-ray (EDX), and the effects of initial pH, adsorption time, initial concentration of lead (II), dosage of adsorbent and coexistence of other metal ions on the adsorption of lead (II) were investigated. The results showed that compared with pectin gel beads, the specific surface area and thermal stability of pectin/poly m-phenylenediamine gel beads were significantly improved and it had better adsorption performance on lead (II) under the same conditions. Adsorption process was in good agreement with the Langmuir isotherm model and the Pseudo-second-order kinetic model, indicating that the adsorption was monolayer and the adsorption process was dominated by chemical adsorption. The maximum adsorption capacity of pectin/poly-m-phenylenediamine gel beads for lead (II) was 352.03 mg/g, which was much higher than that of pectin gel beads (162.99 mg/g). The coexistence of sodium (I) and calcium (II) had a certain degree of inhibition on the adsorption of lead (II). Under three heavy metal ion systems (lead (II), iron (II), copper (II)), the affinity of pectin/poly-m-phenylenediamine gel beads for heavy metal ions was lead (II)>iron (II)>copper (II). The adsorption mechanisms of lead (II) were the ion exchange between calcium (II) and lead (II), the chelation with oxygen-containing and nitrogen-containing functional groups and electrostatic interaction. After 5 adsorption/desorption cycles, the pectin/poly-m-phenylenediamine gel bead showed good regeneration ability(removal rate was 90%). Pectin/poly-m-phenylenediamine gel beads can be used as an adsorbent to remove lead (II).
  • [1]
    Zare E N, Lakouraj M M, Kasirian N. Development of effective nano-biosorbent based on poly m-phenylenediamine grafted dextrin for removal of Pb(II) and methylene blue from water[J]. Carbohydrate Polymers,2018,201:539−548. doi: 10.1016/j.carbpol.2018.08.091
    [2]
    Huang Y, Li J, Chen X, et al. Applications of conjugated polymer based composites in wastewater purification[J]. RSC Advances,2014,4(107):62160−62178. doi: 10.1039/C4RA11496E
    [3]
    Saha N, Rahman M S, Ahmed M B, et al. Industrial metal pollution in water and probabilistic assessment of human health risk[J]. Journal of Environmental Management,2017,185:70−78.
    [4]
    Cheng H, Hu Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review[J]. Environmental Pollution,2010,158(5):1134−1146. doi: 10.1016/j.envpol.2009.12.028
    [5]
    Alqadami A A, Naushad M, Alothman Z A, et al. Novel metal–organic framework (mof) based composite material for the sequestration of u(vi) and th(iv) metal ions from aqueous environment[J]. ACS Applied Materials & Interfaces,2017,9(41):36026−36037.
    [6]
    Rivas B L, Palencia M. Removal-concentration of pollutant metal-ions by water-soluble polymers in conjunction with double emulsion systems: A new hybrid method of membrane-based separation[J]. Separation and Purification Technology,2011,81(3):435−443. doi: 10.1016/j.seppur.2011.08.021
    [7]
    Xiong C, Pi L, Chen X, et al. Adsorption behavior of Hg2+ in aqueous solutions on a novel chelating cross-linked chitosan microsphere[J]. Carbohydrate Polymers,2013,98(1):1222−1228. doi: 10.1016/j.carbpol.2013.07.034
    [8]
    周美香. 基于新型吸附剂处理重金属废水的研究进展[J]. 中国资源综合利用,2019,37(2):110−112. doi: 10.3969/j.issn.1008-9500.2019.02.033
    [9]
    Lessa E F, Gularte M S, Garcia E S, et al. Orange waste: A valuable carbohydrate source for the development of beads with enhanced adsorption properties for cationic dyes[J]. Carbohydrate Polymers,2017,157:660−668. doi: 10.1016/j.carbpol.2016.10.019
    [10]
    Jakobik-Kolon A, Szybaj A, Mitko K, et al. Zinc Ion removal on hybrid pectin-based beads containing modified poly(methyl methacrylate) waste[J]. Molecules,2017,22(12):2274−2291. doi: 10.3390/molecules22122274
    [11]
    Jakóbik-Kolon A, Bok-Badura J, Milewski A, et al. Long term and large-scale continuous studies on Zinc(II) sorption and desorption on hybrid pectin-guar gum biosorbent[J]. Polymers,2019,11(1):96−113. doi: 10.3390/polym11010096
    [12]
    Singha N R, Karmakar M, Mahapatra M, et al. Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating polymer network for superadsorption of dyes/M(II): Determination of physicochemical changes in loaded hydrogels[J]. Polymer Chemistry,2017,8(20):3211−3237. doi: 10.1039/C7PY00316A
    [13]
    Thakur S, Chaudhary J, Kumar V, et al. Progress in pectin based hydrogels for water purification: Trends and challenges[J]. Journal of Environmental Management,2019,238:210−223.
    [14]
    Wang R, Liang R, Dai T, et al. Pectin-based adsorbents for heavy metal ions: A review[J]. Trends in Food Science & Technology,2019,91:319−329.
    [15]
    Yu W, Zhang L, Meng Y, et al. High conversion synthesis of functional poly(m-phenylenediamine) nanoparticles by Cu-OH-assisted method and its superior ability toward Ag+ adsorption[J]. Synthetic Metals,2013,176:78−85. doi: 10.1016/j.synthmet.2013.05.032
    [16]
    Jiang N, Xu Y, He N, et al. Synthesis of walnut-like hierarchical structure with superhydrophobic and conductive properties[J]. Journal of Materials Chemistry,2010,20(48):10847−10855. doi: 10.1039/c0jm01705a
    [17]
    Qin X, Bai L, Tan Y, et al. β-Cyclodextrin-crosslinked polymeric adsorbent for simultaneous removal and stepwise recovery of organic dyes and heavy metal ions: Fabrication, performance and mechanisms[J]. Chemical Engineering Journal,2019,372:1007−1018. doi: 10.1016/j.cej.2019.05.006
    [18]
    Hua R, Li Z. Sulfhydryl functionalized hydrogel with magnetism: Synthesis, characterization, and adsorption behavior study for heavy metal removal[J]. Chemical Engineering Journal,2014,249:189−200. doi: 10.1016/j.cej.2014.03.097
    [19]
    Manawi Y, McKay G, Ismail N, et al. Enhancing lead removal from water by complex-assisted filtration with acacia gum[J]. Chemical Engineering Journal,2018,352:828−836. doi: 10.1016/j.cej.2018.07.087
    [20]
    Pal P, Pal A. Enhanced Pb2+ removal by anionic surfactant bilayer anchored on chitosan bead surface[J]. Journal of Molecular Liquids,2017,248:713−724. doi: 10.1016/j.molliq.2017.10.103
    [21]
    Liang R, Wang L, Chen J, et al. Alkylated pectin: Synthesis, characterization, viscosity and emulsifying properties[J]. Food Hydrocolloids,2015,50:65−73. doi: 10.1016/j.foodhyd.2015.04.007
    [22]
    Yu W, Zhang L, Wang H, et al. Adsorption of Cr(VI) using synthetic poly(m-phenylenediamine)[J]. Journal of Hazardous Materials,2013,260:789−795. doi: 10.1016/j.jhazmat.2013.06.045
    [23]
    Meng Y, Zhang L, Chai L, et al. Facile and large-scale synthesis of poly(m-phenylenediamine) nanobelts with high surface area and superior dye adsorption ability[J]. Rsc Advances,2014,4(85):45244−45250. doi: 10.1039/C4RA06553K
    [24]
    Guenter E A, Popeyko O V, Markov P A, et al. Swelling and morphology of calcium pectinate gel beads obtained from Silene vulgaris callus modified pectins[J]. Carbohydrate Polymers,2014,103:550−557. doi: 10.1016/j.carbpol.2013.12.071
    [25]
    Li D, Huang J, Kaner R B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications[J]. Accounts of Chemical Research,2009,42(1):135−145. doi: 10.1021/ar800080n
    [26]
    Laurent J, Casellas M, Dagot C. Heavy metals uptake by sonicated activated sludge: Relation with floc surface properties[J]. Journal of Hazardous Materials,2009,162(2-3):652−660. doi: 10.1016/j.jhazmat.2008.05.066
    [27]
    Cai W, Dionysiou D D, Fu F, et al. CTAB-intercalated molybdenum disulfide nanosheets for enhanced simultaneous removal of Cr(VI) and Ni(II) from aqueous solutions[J]. Journal of Hazardous Materials,2020,396:122728. doi: 10.1016/j.jhazmat.2020.122728
    [28]
    Zhang W, Song J, He Q, et al. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal[J]. Journal of Hazardous Materials,2020,384:121445. doi: 10.1016/j.jhazmat.2019.121445
    [29]
    Liang W, Li M L, Zhang Z Q, et al. Decontamination of Hg(II) from aqueous solution using polyamine-co-thiourea inarched chitosan gel derivatives[J]. International Journal of Biological Macromolecules,2018,113:106−115. doi: 10.1016/j.ijbiomac.2018.02.101
    [30]
    Sharma V, Rekha P, Mohanty P. Nanoporous hypercrosslinked polyaniline: An efficient adsorbent for the adsorptive removal of cationic and anionic dyes[J]. Journal of Molecular Liquids,2016,222:1091−1100. doi: 10.1016/j.molliq.2016.07.130
    [31]
    Bulut Y, Aydın H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells[J]. Desalination,2006,194(1):259−267.
    [32]
    Al-Asheh S, Banat F, Al-Omari R, et al. Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data[J]. Chemosphere,2000,41(5):659−665. doi: 10.1016/S0045-6535(99)00497-X
    [33]
    Zare E N, Lakouraj M M, Ramezani A. Efficient sorption of Pb(II) from an aqueous solution using a poly(aniline-co-3-aminobenzoic acid)-based magnetic core-shell nanocomposite[J]. New Journal of Chemistry, 2016, 40(3): 2521−2529.
    [34]
    Awual M R, Eldesoky G E, Yaita T, et al. Schiff based ligand containing nano-composite adsorbent for optical copper(II) ions removal from aqueous solutions[J]. Chemical Engineering Journal,2015,279:639−647. doi: 10.1016/j.cej.2015.05.049
    [35]
    Li K, Wu G, Wang M, et al. Efficient removal of lead ions from water by a low-cost alginate-melamine hybrid sorbent[J]. Applied Sciences-Basel,2018,8(9):1518−1530. doi: 10.3390/app8091518
    [36]
    Ravishankar H, Wang J, Shu L, et al. Removal of Pb(II) ions using polymer based graphene oxide magnetic nano-sorbent[J]. Process Safety and Environmental Protection,2016,104:472−480. doi: 10.1016/j.psep.2016.04.002
  • Cited by

    Periodical cited type(22)

    1. 于梦丽,陈雨,林凤岩,陈复生. 物理-酶耦合修饰大豆蛋白凝胶特性的研究进展. 食品与发酵工业. 2025(05): 351-360 .
    2. 李婧御,李元鑫,刘冉,孙永旺,郭尚敬,穆洪静,赵庆奎. 原花青素对大豆分离蛋白凝胶流变特性及抗氧化活性的影响. 中国调味品. 2024(03): 81-86 .
    3. 李志杰,闫睿思,汪秀娟,胡中海,蔡天赐,甄宗圆. 蛋白添加剂增强肉制品凝胶性研究进展. 食品科学. 2024(07): 348-357 .
    4. 胡婷婷. 即食豆花的工艺研究进展. 中国食品工业. 2024(10): 113-115 .
    5. 杜童申,刘悦,马骏骅,王馨怡,沈存宽,杨华,颜金鑫. 超声预处理对亚麻籽胶-大豆分离蛋白复合凝胶凝胶特性及结构的影响. 食品工业科技. 2024(13): 83-90 . 本站查看
    6. 袁钦杰,桑森鑫,刘小杰,叶佳琳,胡浩,刘兴泉,张娇娇. 用于组织化蛋白开发的豆类分离蛋白功能特性评价. 中国粮油学报. 2024(06): 118-126 .
    7. 朱秀清,邓筱琪,朱颖,王喜泉,李玉玲,夏晓雨. 大豆蛋白凝胶制备及其影响因素的研究进展. 食品工业科技. 2023(06): 405-414 . 本站查看
    8. 吕静,杨洁茹,李坤,陈龙,李静,李晓卓,朱静. 不同提取工艺对油茶籽粕蛋白质结构及功能特性的影响. 食品工业科技. 2023(14): 102-110 . 本站查看
    9. 张惠琳,林捷,郑华,吴绍宗,刘文博,胡嘉炜,刘泽祺,黄茵. 黄原胶和瓜尔豆胶对鸡血凝胶特性的影响. 食品工业科技. 2023(18): 106-114 . 本站查看
    10. 于淼,裴昱博,李春. 基于超声波改性大豆分离蛋白的研究进展. 食品科技. 2023(12): 222-228 .
    11. 邹婕,王琪,马美湖,黄茜,盛龙. 高场强超声对蛋清液起泡特性的影响. 中国食品学报. 2022(01): 163-171 .
    12. 刘冉,曾庆华,梁明,王雷,程霜. 黄原胶对大豆分离蛋白凝胶流变特性和微观结构的影响. 食品工业科技. 2022(04): 65-72 . 本站查看
    13. 朱宏星,高田毅,黄杨,王鑫,葛庆丰,王道营,孙冲. 肌红蛋白血红素辅基氧化修饰对肌球蛋白功能特性及凝胶特性的影响. 食品科学. 2022(08): 1-8 .
    14. 李晓惠,任仙娥,杨锋,黄永春,黄承都,张昆明,刘纯友. 水力空化对大豆分离蛋白谷氨酰胺转氨酶促凝胶行为的影响. 食品科学. 2022(11): 67-74 .
    15. 李晓惠,任仙娥,杨锋,黄永春,黄承都,张昆明,刘纯友. 水力空化对大豆分离蛋白钙致凝胶行为的影响. 中国调味品. 2022(08): 1-5 .
    16. 王可尧,任仙娥,杨锋,黄永春,张昆明,刘纯友,黄承都. 大豆和豌豆分离蛋白复合热促凝胶特性的研究. 中国调味品. 2022(10): 7-11 .
    17. 张娟,于志杰,杜枚. 大豆蛋白改性研究的进展. 粮食与饲料工业. 2022(05): 29-31+35 .
    18. 刘静雪,梁雪寒,田兰英,李凤林. 超声处理对大豆分离蛋白性质影响研究. 粮食加工. 2022(06): 22-25 .
    19. 杨晓盼,刘丽莉,黄正迪,李媛媛,郝威铭,张孟军,史胜娟. 常温贮藏期间鸡蛋清流变特性和蛋白质成分的变化. 浙江农业学报. 2021(03): 526-533 .
    20. 安红周,梁会会,费小吉,李盘欣,黄泽华. 不同大豆分离蛋白流变学特性的比较研究. 食品科技. 2021(04): 142-148 .
    21. 蔡燕萍,游寅寅,刘建华,邱月,吕飞,丁玉庭. 大豆蛋白凝胶性及其改良方法的研究进展. 食品与发酵工业. 2021(15): 298-306 .
    22. 王俊鹏,贺稚非,李敏涵,齐世超,李洪军. 冷等离子体技术在蛋白质改性中的应用研究进展. 食品科学. 2021(21): 299-307 .

    Other cited types(13)

Catalog

    Article Metrics

    Article views (290) PDF downloads (29) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return