WEN Mingming, ZHAO Zhiheng, BI Jie, et al. Effects of High Sucrose Diet on the Development and Antioxidant Capacity of Drosophila melanogaster and Its Mechanism[J]. Science and Technology of Food Industry, 2021, 42(21): 377−384. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120149.
Citation: WEN Mingming, ZHAO Zhiheng, BI Jie, et al. Effects of High Sucrose Diet on the Development and Antioxidant Capacity of Drosophila melanogaster and Its Mechanism[J]. Science and Technology of Food Industry, 2021, 42(21): 377−384. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120149.

Effects of High Sucrose Diet on the Development and Antioxidant Capacity of Drosophila melanogaster and Its Mechanism

More Information
  • Received Date: December 15, 2020
  • Available Online: August 26, 2021
  • In order to explore the effect of high sucrose diet on the development, life span and antioxidant capacity of D. melanogaster, life span, locomotion capacity and antioxidant ability of D. melanogaster were measured through feeding high sucrose-diets to D. melanogaster. At the same time, transcriptome sequencing of high sucrose D. melanogaster was performed to find out the mechanism that high sucrose affected the development of D. melanogaster at the gene transcription level. The results showed that compared with the control group, the average life span of female flies, male flies and mixed flies was shortened by 35.01%、43.01% and 34.15%, respectively in the high-sucrose group. The survival curve of male D. melanogaster and mixed D. melanogaster were significantly shortened than that of the control group(P<0.05). Compared with the control group, high sucrose diet reduced pupation rate, eclosion rate and climbing ability of flies. In the high-sucrose group, T-SOD activities and CAT activities were decreased in male D. melanogaster, while MDA content was increased. In addition, through transcriptome sequencing, we found that the differentially expressed genes of the high-sugar group flies were enriched in the development process, the regulation of metabolic activities, and the stress response of flies. This study showed that high sucrose diet could significantly reduce the life span, development, locomotion capacity and antioxidant capacity of D. melanogaster, it would provide reference for healthy diet.
  • [1]
    朱亚男, 徐菘阳, 丁慧敏, 等. 白玉菇多糖对免疫抑制型小鼠的免疫调节作用[J]. 食品工业科技,2020(7):295−300. [Zhu Y N, Xu S Y, Deng H M, et al. Immunomodulatory effects of white Hypsizygus marmoreus polysaccharides on immunosuppressive mice[J]. Science and Technology of Food Industry,2020(7):295−300.
    [2]
    Srab F, Id B, Aab C, et al. Functional, nutritional, antinutritional, and microbial assessment of novel fermented sugar syrup fortified with pre-mature fruits of Totapuri mango and star gooseberry[J]. LWT-Food Science and Technology,2021,136(P1):110276.
    [3]
    工业和信息化部消费品工业司. 食品工业发展报告[M]. 北京: 中国轻工业出版社, 2019.

    Department of Consumer Goods Industry, Ministry of Industry and Information Technology. China food industry[M]. Beijing: China Light Industry Press, 2019.
    [4]
    Morenga L T, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies[J]. BMJ: British Medical Journal,2013,346(2):e7492.
    [5]
    L O’Connor, Imamura F, Brage S, et al. Intakes and sources of dietary sugars and their association with metabolic and inflammatory markers[J]. Clinical Nutrition (Edinburgh, Scotland),2018,37(4):1313−1322. doi: 10.1016/j.clnu.2017.05.030
    [6]
    Chi D L, Scott J M. Added sugar and dental caries in children: A scientific update and future steps[J]. Dental Clinics of North America,2019,63(1):17−33. doi: 10.1016/j.cden.2018.08.003
    [7]
    张茜. Tristetraprolin对糖尿病肾病及高糖环境下足细胞损伤的调节作用[D]. 郑州: 郑州大学, 2020.

    Zhang Q. The regulatory role of tristetraprolin in diabetic nephropathy and high glucose-induced injury of podocytes[D]. Zhengzhou: Zhengzhou University, 2020.
    [8]
    王飞. 化瘀祛浊法对糖尿病大鼠大血管病炎性因子影响的实验研究[D]. 沈阳: 辽宁中医药大学, 2017.

    Wang F. Experimental study on the effect of removing blood stasis and removing turbidity on inflammatory factors of macrovascular disease in diabetic rats[D]. Shenyang: Liaoning University of Traditional Chinese Medicine, 2017.
    [9]
    Yin J, Zhu Y, Vasanti M, et al. Intake of sugar-sweetened and low-calorie sweetened beverages and risk of cardiovascular disease: A meta-analysis and systematic review[J]. Advances in Nutrition (Bethesda, Md.),2020:6882.
    [10]
    Chantal V S, David L, Mackay T F C, et al. Genome-wide analysis reveals novel regulators of growth in Drosophila melanogaster[J]. Plos Genetics,2016,12(1):e1005616. doi: 10.1371/journal.pgen.1005616
    [11]
    Jorn T, Cas F, Milou B, et al. Fructose and sucrose intake increase exogenous carbohydrate oxidation during exercise[J]. Nutrients,2017,9(2):167. doi: 10.3390/nu9020167
    [12]
    王俊婷. 壳聚糖酰基缩氨基硫脲类衍生物对果蝇寿命、繁殖力的影响[D]. 呼和浩特: 内蒙古农业大学, 2019.

    Wang J T. Effect of novel acyl-thiosemicarbazone-chitosan derivatives on lifespan and fecundity in Drosophila melanogaster[D]. Huhehaote: Inner Mongolia Agricultural University, 2019.
    [13]
    叶文斌, 何玉鹏, 文晓晓, 等. Pb2+对果蝇生育力和寿命及抗氧化能力的影响[J]. 首都师范大学学报(自然科版),2019,40(3):44−49. [Ye W B, He Y P, Wen X X, et al. Effects of Pb2+ on fertility, longevity and antioxidant capacity of Drosophila melanogaster[J]. Journal of Capital Normal University (Natural Science Edition),2019,40(3):44−49.
    [14]
    李尽哲, 梁利香, 黄雅琴. 花椒对果蝇生殖力、寿命和生长发育的影响[J]. 黑龙江畜牧兽医,2016(21):184−187. [Li J Z, Liang L X, Huang Y Q. Effects of Zanthoxylum on fecundity, life span and growth and development of Drosophila melanogaster[J]. Heilongjiang Animal Science and Veterinary Medicine,2016(21):184−187.
    [15]
    Dobson A J, Ezcurra M, Flanagan C E, et al. Nutritional programming of lifespan by FOXO inhibition on sugar-rich diets[J]. Cell Reports,2017,18(2):299−306. doi: 10.1016/j.celrep.2016.12.029
    [16]
    Rovenko B M, Kubrak O I, Gospodaryov D V, et al. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster[J]. Journal of Insect Physiology,2015,79:42−54. doi: 10.1016/j.jinsphys.2015.05.007
    [17]
    Na J, Musselman L P, Pendse J, et al. A Drosophila model of high sugar diet-induced cardiomyopathy[J]. PLOS Genetics,2013,9(1):e1003175. doi: 10.1371/journal.pgen.1003175
    [18]
    Nakamura B N, Lawson G, Chan J Y, et al. Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age dependent manner[J]. Free Radical Biology & Medicine,2010,49:1368−1379.
    [19]
    Ps A, Cl B, Pki A, et al. TL15 of Arthrospira platensis sulfite reductase scavenges free radicals demonstrated in oxidant induced larval zebrafish (Danio rerio) model[J]. International Journal of Biological Macromolecules,2021,166:641−653. doi: 10.1016/j.ijbiomac.2020.10.222
    [20]
    Halliwell B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease[J]. The American Journal of Medicine,1991,91(3C):14S−22S.
    [21]
    Diamanti-Kandarakis E, Papalou O, Kandaraki E A, et al. Mechanisms in endocrinology: Nutrition as a mediator of oxidative stress in metabolic and reproductive disorders in women[J]. European Journal of Endocrinology,2017,176(2):R79−R99. doi: 10.1530/EJE-16-0616
    [22]
    Helmut S, Wilhelm S, Alex S. Nutritional, dietary and postprandial oxidative stress[J]. The Journal of Nutrition,2005,135(5):969−972. doi: 10.1093/jn/135.5.969
    [23]
    Halliwell B. Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans[J]. Free Radical Research,1996,25(1):57−74. doi: 10.3109/10715769609145656
    [24]
    李艳, 孙凤娇, 张天然, 等. 高糖、高脂饮食与不同浓度硒对大鼠脂代谢及氧化应激的影响[J]. 山东大学学报(医学版),2020,58(5):98−106. [Li Y, Sun F J, Zhang T R, et al. Effects of high-sugar, high-fat diet and different concentrations of selenium on lipid metabolism and oxidative stress in rats[J]. Journal of Shandong University (Health Sciences),2020,58(5):98−106.
    [25]
    吴春红. Dynamitin调控雄性果蝇生殖和幼虫发育的机制研究[D]. 武汉: 华中师范大学, 2017.

    Wu C H. Dynamitin regulates male fertility and larval development of Drosophila[D]. Wuhan: Central China Normal University, 2017.
    [26]
    张晓月. 高糖饮食对果蝇肠道干细胞增殖及分化的影响[D]. 哈尔滨: 东北林业大学, 2018.

    Zhang X Y. Effects of high sugar diet on proliferation and differentiation of drosophila intestinal stem cells in Drosophila melanogaster[D]. Harbin: Northeast Forestry University, 2018.
    [27]
    刘莹, 刘莉, 关慧波. 远志皂苷对果蝇攀爬能力及寿命的影响[J]. 长春中医药大学学报,2019,35(5):936−938. [Liu Y, Liu L, Guan H B. Effect of Polygala tenuifolia saponin on climbing ability and life span of Drosophila melanogaster[J]. Journal of Changchun University of Chinese Medicine,2019,35(5):936−938.
    [28]
    怀雪, 孟永海, 王艳艳, 等. 刺玫果提取物抗衰老作用的研究[J]. 食品科技,2019,44(2):215−220. [Huai X, Meng Y M, Wang Y Y, et al. Anti-aging effect of Rosa davurica Pall. extract on Drosophila melanogaster[J]. Food Science and Technology,2019,44(2):215−220.
    [29]
    王彦平, 袁贵英, 曹娅, 等. 紫山药提取物抗氧化与延长寿命作用的研究[J]. 食品工业科技,2017,38(1):360−363. [Wang Y P, Yuan G Y, Cao Y, et al. Effect of purple yam extract on antioxidant function and lifespan in Drosophila melanogaster[J]. Science and Technology of Food Industry,2017,38(1):360−363.
    [30]
    秦永燕, 王妤婕, 李颖, 等. 黄芪多糖对果蝇寿命和抗氧化作用的影响[J]. 食品工业科技,2020,41(2):288−291. [Qin Y Y, Wang Y J, Li Y, et al. Effects of Astragalus polysaccharide on life span and antioxidation of Drosophila melanogaster[J]. Science and Technology of Food Industry,2020,41(2):288−291.
    [31]
    王耀辉, 任海虹, 王景雪, 等. 白灵菇多糖对果蝇寿命及抗氧化活性的影响[J]. 食品工业科技,2018,39(5):313−318. [Wang Y H, Ren H H, Wang J X, et al. Effect of polysaccharides of Pleurotus nebrodensis on the life-span and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry,2018,39(5):313−318.
    [32]
    邵婵. 酸枣提取物对果蝇抗衰老机理的研究[D]. 天津: 天津科技大学, 2012.

    Shao C. Studies on anti-aging mechanism of Choerospondias axillaries extraction on Drosophila melanogaster[D]. Tianjin: Tianjin University of Science and Technology, 2012.
    [33]
    周翔, 辛中国, 孙国光. 血清过氧化脂质的正常值和衰老的关系[J]. 中国老年学杂志,1985(2):4−7. [Zhou X, Xin Z G, Sun G G. Relationship between normal serum lipid peroxidation and senescence[J]. Chinese Journal of Gerontology,1985(2):4−7.
    [34]
    Lushchak O V, Gospodaryov D V, Rovenko B M, et al. Specific dietary carbohydrates differentially influence the life span and fecundity of Drosophila melanogaster[J]. Journals of Gerontology,2014(1):3−12.
    [35]
    地里热巴·沙它尔. 姜黄素与糖/蛋白平衡对果蝇的协同抗衰老作用研究[D]. 杭州: 浙江大学, 2015.

    Dilireba S T E. Studies on collaborative anti-aging effect of curcumin and sugar/protein balance on Drosophila[D]. Hangzhou: Zhejiang University, 2015.
    [36]
    唐润东, 宋思远, 吴薇. 饮食中糖分控制对雌黑腹果蝇寿命和中肠干细胞的影响[J]. 实验动物与比较医学,2019,39(2):118−123. [Tang R D, Song S Y, Wu W. Effects of sugar concentration control on the longevity and the mid-gut stem cells of female Drosophila melanogaster[J]. Laboratory Animal and Comparative Medicine,2019,39(2):118−123.
    [37]
    Diao J X, Ou J Y, Dai H, et al. Antioxidant and antiapoptotic polyphenols from green tea extract ameliorate CCl4-induced acute liver injury in mice[J]. Chinese Journal of Integrative Medicine,2020,26(10):736−744. doi: 10.1007/s11655-019-3043-5
    [38]
    Idma B, Cpl A, Jpr A, et al. Optimization of the thiobarbituric acid-malonaldehyde reaction in non-aqueous medium. Direct analysis of malonaldehyde in oil samples by HPLC with fluorimetric detection[J]. Microchemical Journal,2020,159:105318. doi: 10.1016/j.microc.2020.105318
    [39]
    Harman D. Aging: A theory based on free radical and radiation chemistry[J]. Journal of Gerontology,1956,11(3):298−300. doi: 10.1093/geronj/11.3.298
    [40]
    Harman D. The aging process[J]. Proceedings of the National Academy of Sciences of the United States of America,1981,78(11):7124−7128. doi: 10.1073/pnas.78.11.7124
    [41]
    孙奇林, 陈雯洁, 杨叶虹, 等. 黄芪多糖改善高糖诱导的H9C2心肌细胞氧化应激损伤的机制研究[J]. 老年医学与保健,2019,25(5):583−589. [Sun Q L, Chen W J, Yang Y H, et al. The mechanism of Astragalus polysaccharides in improving the oxidative stress injury induced by high glucose in H9C2 cardiomyocytes[J]. Geriatrics and Health Care,2019,25(5):583−589. doi: 10.3969/j.issn.1008-8296.2019.05.011
    [42]
    朱国丽, 尹方超, 王丽, 等. 基于微流控芯片的高糖对模式生物线虫寿命影响及白藜芦醇苷保护性作用考察[J]. 色谱,2016,34(2):140−145. [Zhu G L, Yin F C, Wang L, et al. Microdevice for the investigation of high-glucose induced lifespan and the protective effect of polydatin in C. elegans[J]. Chinese Journal of Chromatography,2016,34(2):140−145. doi: 10.3724/SP.J.1123.2015.10009
  • Cited by

    Periodical cited type(4)

    1. 马琳,祁琪,李雅轩,赵昕. 甜蜜素对果蝇繁殖生长及运动能力的影响. 首都师范大学学报(自然科学版). 2024(04): 36-41 .
    2. 严静,薛秋艳,王旸,陈汶意,谢诗晴,江津津,黎攀,杜冰. 发酵米荞对高脂肪秀丽隐杆线虫的降脂及抗氧化作用. 食品工业科技. 2023(06): 8-15 . 本站查看
    3. 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用. 山东大学学报(医学版). 2023(07): 19-26 .
    4. 文明明,毕洁,贺艳萍,戴煌,张威,舒在习,肖安红. 高糖饮食抑制后代雄性果蝇寿命和育性及其作用机制. 现代食品科技. 2022(10): 9-18 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (720) PDF downloads (76) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return