YANG Daheng, ZHAO Yifan, ZHANG Lihong, et al. Physical Field-Assisted Osmotic Dehydration Technology and Its Application in Fruit and Vegetable Drying [J]. Science and Technology of Food Industry, 2021, 42(13): 435−440. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120138.
Citation: YANG Daheng, ZHAO Yifan, ZHANG Lihong, et al. Physical Field-Assisted Osmotic Dehydration Technology and Its Application in Fruit and Vegetable Drying [J]. Science and Technology of Food Industry, 2021, 42(13): 435−440. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120138.

Physical Field-Assisted Osmotic Dehydration Technology and Its Application in Fruit and Vegetable Drying

More Information
  • Received Date: December 15, 2020
  • Available Online: April 20, 2021
  • Osmotic dehydration is a non-thermal processing technology that can promote the dehydration of fruits and vegetables while maintaining their sensory and functional properties and extending the shelf life. However, the main disadvantage of osmotic dehydration technology is the low mass transfer efficiency. Physical field assisted osmotic dehydration technology can effectively improve the efficiency of osmotic dehydration. Physical field assisted osmotic dehydration technology includes ultrasonic, gamma ray, pulsed electric field, vacuum and high hydrostatic pressure assisted osmotic dehydration. Physical field assisted osmotic dehydration technologies and their application in fruits and vegetables are studied in this paper and some new research progresses and the problems are discussed. The mechanism and factors affecting mass transfer efficiency of osmotic dehydration, physical field assisted osmotic dehydration technology, dynamic model and the application of physical field assisted osmotic dehydration in fruit and vegetable drying are discussed.
  • [1]
    常暖迎, 郭新宇, 肖冰. 我国果蔬质量安全问题及解决措施[J]. 食品安全导刊,2015(33):30.
    [2]
    Nowacka M, Fijalkowska A, Dadan M, et al. Effect of ultrasound treatment during osmotic dehydration on bioactive compounds of cranberries[J]. Ultrasonics,2018,83:18−25. doi: 10.1016/j.ultras.2017.06.022
    [3]
    Dermesonlouoglou E K, Giannakourou M C. Evaluation and modelling of osmotic pre-treatment of peach using alternative agents in a multiple-component solution.[J]. Journal of the Science of Food & Agriculture,2019,99(3):1240−1249.
    [4]
    赵金红, 温馨, 彭郁, 等. 渗透压脱水前处理对芒果冻藏中品质变化的影响[J]. 现代食品科技,2014,30(5):225−231.
    [5]
    董全. 蓝莓渗透脱水和流化床干燥的研究[D]. 重庆: 西南农业大学, 2005.
    [6]
    蓝浩, 周国燕. 猕猴桃渗透脱水的响应面优化分析[J]. 吉林农业科学,2013,38(1):87−91.
    [7]
    Raoultwack A L. Recent advances in the osmotic dehydration of foods[J]. Trends in Food Science & Technology,1994,5(8):255−260.
    [8]
    Akharume F, Singh K, Sivanandan L. Effects of liquid smoke infusion on osmotic dehydration kinetics and microstructural characteristics of apples cubes[J]. Journal of Food Engineering,2018,246:51−57.
    [9]
    Maldonado R R, Ana Júlia Rocha Mendes Pedreira, Cristianini L B, et al. Application of soluble fibres in the osmotic dehydration of pineapples and reuse of effluent in a beverage fermented by water kefir[J]. LWT- Food Science and Technology,2020,132:109819. doi: 10.1016/j.lwt.2020.109819
    [10]
    Silva K S, Fernandes M A, Mauro M A. Effect of calcium on the osmotic dehydration kinetics and quality of pineapple[J]. Journal of Food Engineering,2014,134(134):37−44.
    [11]
    Alino M, Grau R, Baigts D, et al. Influence of sodium replacement on the salting kinetics of pork loin[J]. Journal of Food Engineering,2009,95(4):551−557. doi: 10.1016/j.jfoodeng.2009.06.016
    [12]
    Renato D J J J, Correa, Jefferson Luiz Gomes, De MendoncA K S, et al. Influence of sodium replacement and vacuum pulse on the osmotic dehydration of eggplant slices[J]. Innovative Food Science & Emerging Technologies,2017,41:10−18.
    [13]
    Derossi A, Severini C, Del Mastro A, et al. Study and optimization of osmotic dehydration of cherry tomatoes in complex solution by response surface methodology and desirability approach[J]. LWT - Food Science and Technology,2015,60(2):641−648. doi: 10.1016/j.lwt.2014.10.056
    [14]
    Ayse ispir, Inci Türk Togrul. Osmotic dehydration of apricot: Kinetics and the effect of process parameters[J]. Chemical Engineering Research & Design,2009,87(2):166−180.
    [15]
    Song C, Ma X, Li Z, et al. Mass transfer during osmotic dehydration and its effect on anthocyanin retention of microwave vacuum-dried blackberries[J]. Journal of the Science of Food and Agriculture,2020,100(1):102−109.
    [16]
    Tonon R V, Baroni A F, Míriam D Hubinger. Osmotic dehydration of tomato in ternary solutions: Influence of process variables on mass transfer kinetics and an evaluation of the retention of carotenoids[J]. Journal of Food Engineering,2007,82(4):509−517. doi: 10.1016/j.jfoodeng.2007.03.008
    [17]
    魏彦君. 南美白对虾超声波辅助热泵干燥动力学及品质特性研究[D]. 淄博: 山东理工大学, 2014.
    [18]
    兰冬梅, 许平, 林晓岚, 等. 超声波辅助渗透脱水预处理的农产品干制研究进展[J]. 亚热带农业研究,2015,11(2):133−138.
    [19]
    Fabiano A N Fernandes, Maria Izabel Gallão, Sueli Rodrigues. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration[J]. LWT - Food Science and Technology,2007,41(4):604−610.
    [20]
    Rastogi N K, Raghavarao K S M S, Niranjan K. Chapter 11 - Recent developments in osmotic dehydration[M]. Emerging Technologies for Food Processing (Second Edition), 2014: 181−212.
    [21]
    Fito P, Chiralt A, Betoret N, et al. Vacuum impregnation and osmotic dehydration in matrix engineering: Application in functional fresh food development[J]. Journal of Food Engineering,2001,49(2−3):175−183. doi: 10.1016/S0260-8774(00)00220-X
    [22]
    Rastogi N K, Angersbach A, Knorr D. Synergistic effect of high hydrostatic pressure pretreatment and osmotic stress on mass transfer during osmotic dehydration[J]. Journal of Food Engineering,2000,45(1):25−31. doi: 10.1016/S0260-8774(00)00037-6
    [23]
    Ragavan K V, Rastogi N, Srivastava A. Industrial food processing contaminants[M]. Food Toxicology, 2016: 359-432.
    [24]
    Jin T Z, Guo M, Zhang H Q. Upscaling from benchtop processing to industrial scale production: More factors to be considered for pulsed electric field food processing[J]. Journal of Food Engineering,2015,146:72−80. doi: 10.1016/j.jfoodeng.2014.08.020
    [25]
    Artur Wiktor, Magdalena Sledz, Malgorzata Nowacka, et al. The impact of pulsed electric field treatment on selected bioactive compound content and color of plant tissue[J]. Innovative Food Science & Emerging Technologies,2015,30:69−78.
    [26]
    Ishfaq Ahmed, Ihsan Mabood Qazi, Suraiya Jamal. Developments in osmotic dehydration technique for the preservation of fruits and vegetables[J]. Innovative Food Science & Emerging Technologies,2016,34:29−43.
    [27]
    Dimakopoulou-Papazoglou D, Katsanidis E. Osmotic processing of meat: mathematical modeling and quality parameters[J]. Food Engineering Reviews,2020,12(1):32−47. doi: 10.1007/s12393-019-09203-1
    [28]
    Assis F R, Rui M, Morais A. Mass transfer in osmotic dehydration of food products: comparison between mathematical models[J]. Food Engineering Reviews,2016,8(2):116−133. doi: 10.1007/s12393-015-9123-1
    [29]
    李为强, 宋亚. 渗透脱水传质过程的国内外研究进展[J]. 辽宁化工,2016,45(4):507−511, 515.
    [30]
    王妮. 莴笋渗透脱水传质动力学及渗后热风干燥特性研究[D]. 昆明: 昆明理工大学, 2011.
    [31]
    Cheng X F, Zhang M, Adhikari B, et al. Effect of power ultrasound and pulsed vacuum treatments on the dehydration kinetics, distribution, and status of water in osmotically dehydrated strawberry: A combined NMR and DSC study[J]. Food & Bioprocess Technology,2014,7(10):2782−2792.
    [32]
    Sharma Maanas, Dash Kshirod K. Effect of ultrasonic vacuum pretreatment on mass transfer kinetics during osmotic dehydration of black jamun fruit[J]. Ultrasonics Sonochemistry,2019,58:104693. doi: 10.1016/j.ultsonch.2019.104693
    [33]
    Alam M S, Kaur M, Ramya H G. Mass transfer kinetics for osmotic dehydration of kinnow fruit in sugar solution[J]. Proceedings of the National Academy of Sciences India,2019,89(1):361−370.
    [34]
    Pessoa Thayze Rodrigues Bezerra, Lima A G Barbosa de, Martins Pierre Corre, et al. Osmotic dehydration of cassava cubes: Kinetic analysis and optimization[J]. Diffusion Foundations,2020,25:99−113. doi: 10.4028/www.scientific.net/DF.25.99
    [35]
    Sakooei-Vayghan R, Peighambardoust S H, Hesari J, et al. Properties of dried apricots pretreated by ultrasound-assisted osmotic dehydration and application of active coatings[J]. Food Technology and Biotechnology,2020,58(3):249−259.
    [36]
    Prithani R, Dash K K. Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit[J]. Innovative Food ence & Emerging Technologies,2020,64:102407.
    [37]
    Masztalerz K, Lech K, Wojdyo A, et al. The impact of the osmotic dehydration process and its parameters on the mass transfer and quality of dried apples[J]. Drying Technology,2020:1−13. doi: 10.1080/07373937.2020.1741607
    [38]
    Li L, Yu Y, Xu Y, et al. Effect of ultrasound-assisted osmotic dehydration pretreatment on the drying characteristics and quality properties of Sanhua plum (Prunus salicina L.)[J]. LWT- Food Science and Technology,2021,138:110653. doi: 10.1016/j.lwt.2020.110653
    [39]
    Junqueira Joao Renato de Jesus, Jefferson Luiz Gomes Correa, Mendonca Kamilla Soares de, et al. Pulsed vacuum osmotic dehydration of beetroot, carrot and eggplant slices: Effect of vacuum pressure on the quality parameters[J]. Food and Bioprocess Technology,2018,11(10):1863−1875. doi: 10.1007/s11947-018-2147-9
    [40]
    Luo W, Tappi S, Wang C, et al. Study of the effect of high hydrostatic pressure (HHP) on the osmotic dehydration mechanism and kinetics of wumei fruit (Prunus mume)[J]. Food and Bioprocess Technology,2018,11(11):2044−2054. doi: 10.1007/s11947-018-2165-7
    [41]
    Dash K K, Balasubramaniam V M, Kamat S. High pressure assisted osmotic dehydrated ginger slices[J]. Journal of Food Engineering,2019,247:19−29.
    [42]
    Tylewicz U, Oliveira G, Alminger M, et al. Antioxidant and antimicrobial properties of organic fruits subjected to PEF-assisted osmotic dehydration[J]. Innovative Food Science & Emerging Technologies,2020,62:102341.
    [43]
    Nazari A, Salehi M A, Abbasi Souraki B. Experimental investigation of effective factors of pulsed electric field in osmotic dehydration of apple[J]. Heat & Mass Transfer,2019,55:2049−2059.
    [44]
    Simal S, José Benedito, Emma S Sánchez, et al. Use of ultrasound to increase mass transport rates during osmotic dehydration[J]. Journal of Food Engineering,1998,36(3):323−336. doi: 10.1016/S0260-8774(98)00053-3
    [45]
    Garcia-Noguera J, Oliveira F I P, Weller C L, et al. Effect of ultrasonic and osmotic dehydration pre-treatments on the colour of freeze dried strawberries[J]. Journal of Food Science & Technology,2014,51(9):2222−2227.
    [46]
    Mehmet Baslar, Ömer Said Toker, Karasu S, et al. Ultrasonic applications for food dehydration[M]. 2016: 1247−1270.
    [47]
    陈童, 张慜, 陈晶晶. 超声波辅助渗透脱水处理及其对西兰花冻结品质的影响[J]. 食品与生物技术学报,2020,39(4):33−40. doi: 10.3969/j.issn.1673-1689.2020.04.005
    [48]
    Paula R Fernández, Lovera N, Ramallo L A. Sucrose syrup reuse during one- and multi-stage osmotic dehydration of pineapple[J]. Journal of Food Process Engineering,2020,43(6):13399.
  • Cited by

    Periodical cited type(5)

    1. 茆鑫,郑剑斌,李广耀,曲敏,郑心琪. 响应曲面法优化刺五加-五味子混菌发酵工艺的研究. 食品科技. 2023(09): 57-64 .
    2. 管立军,李家磊,王崑仑,高扬,严松,陈凯新,季妮娜,李波,王家有,卢淑雯. 乳酸菌发酵对刺五加叶活性成分、体外抗氧化作用与降血糖相关酶的影响. 食品工业科技. 2022(07): 155-162 . 本站查看
    3. 孙慧峰,朱钧溢,国立东,都晓伟. 乳酸菌生物转化药食同源植物活性成分研究进展. 食品工业科技. 2022(07): 474-481 . 本站查看
    4. 关倩倩,熊涛,谢明勇. 植物基食品乳酸菌发酵技术研究进展. 食品与生物技术学报. 2022(07): 1-11 .
    5. 王丽群. 酿酒酵母与白面粉乳杆菌混合发酵对馒头品质的影响. 黑龙江农业科学. 2021(07): 77-81 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (448) PDF downloads (46) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return