DONG Shuang, LI Xiaoyu, SANG Weicai, et al. Process Optimization and Performance Analysis of Modified Zein Film by High Pressure Heat-Moisture (HPHM) Treatment[J]. Science and Technology of Food Industry, 2021, 42(16): 207−212. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120059.
Citation: DONG Shuang, LI Xiaoyu, SANG Weicai, et al. Process Optimization and Performance Analysis of Modified Zein Film by High Pressure Heat-Moisture (HPHM) Treatment[J]. Science and Technology of Food Industry, 2021, 42(16): 207−212. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120059.

Process Optimization and Performance Analysis of Modified Zein Film by High Pressure Heat-Moisture (HPHM) Treatment

More Information
  • Received Date: December 06, 2020
  • Available Online: June 04, 2021
  • In this study, zein films were modified by high pressure heat-moisture (HPHM) method and the technology of HPHM modification was optimized through single experiments and L9(34) orthogonal tests, and the properties of zein film were studied. The optimal technology was as follows: Film-formation solution volume of 9 mL, treatment temperature of 112 ℃ and treatment time of 40 min. Under the optimal technology, the water absorption rate (WAR) and transparency of modified zein film was 11.35%±0.74% and 181.30±3.29, respectively, greatly improved than raw film (P<0.05). Meanwhile, the HPHM zein film exhibited obvious improved in vitro enzymatic hydrolysis resistance (14.92%±0.58%) and tensile strength (16.51±2.13 MPa). FTIR results also showed that the β-bend of zein molecule was converted to more ordered-arranged random coli, β-sheet and α-helix after HPHM modification. This study could provide essential foundations for manufacturing high-hydrophobic protein-based films assisted by HPHM modification.
  • [1]
    赵妍, 田晓花. 玉米醇溶蛋白研究进展[J]. 粮食与油脂,2015,28(1):11−15. doi: 10.3969/j.issn.1008-9578.2015.01.003
    [2]
    Reza K M. Zein and zein-based nano-materials for food and nutrition applications: A review[J]. Trends in Food Science & Technology,2018,79:184−197.
    [3]
    Lena V, Liliana L, Judith R, et al. Electrospunzein fibers incorporating poly(glycerolsebacate) for soft tissue engineering[J]. Nanomaterials,2018,8(3):150. doi: 10.3390/nano8030150
    [4]
    Sutthasupa S, Sanda F. Macroporous scaffolds: Molecular brushes based on oligo(lactic acid)-amino acid-indomethacin conjugated poly(norbornene)s[J]. European Polymer Journal,2017:S0014305717316713.
    [5]
    Guo Y, Liu Z, An H, et al. Nano-structure and properties of maize zein studied by atomic force microscopy[J]. Journal of Cereal Science,2005,41(3):277−281. doi: 10.1016/j.jcs.2004.12.005
    [6]
    Momany F A, Sessa D J, Lawton J W, et al. Structural characterization of α-zein[J]. Journal of Agricultural & Food Chemistry,2006,54(2):543−7.
    [7]
    Kim S, Xu J. Aggregate formation of zein and its structural inversion in aqueous ethanol[J]. Journal of Cereal Science,2008,47(1):1−5. doi: 10.1016/j.jcs.2007.08.004
    [8]
    Serna C P, Filho J F. Biodegradable zein-based blend films: Structural, mechanical and barrier properties.[J]. Food Technology and Biotechnology,2015,53(3):348−353.
    [9]
    姚晓敏, 孙向军, 卢杰. 可食性玉米醇溶蛋白成膜工艺的研究[J]. 食品工业科技,2002(1):20−23. doi: 10.3969/j.issn.1002-0306.2002.01.006
    [10]
    Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering[J]. Journal of Controlled Release,2014:108−122.
    [11]
    Zhang Y, Cui L, Che X, et al. Zein-based films and their usage for controlled delivery: Origin, classes and current landscape[J]. Journal of Controlled Release,2015:206−219.
    [12]
    李敏, 王瑶, 王双双, 等. 玉米醇溶蛋白支架生物相容性及在牙周缺损修复中的应用[J]. 中国组织工程研究,2016,20(25):3726−3731. doi: 10.3969/j.issn.2095-4344.2016.25.012
    [13]
    王键, 何余堂, 尹天罡, 等. 有机酸改性对玉米醇溶蛋白膜机械性能的影响[J]. 中国食品学报,2020,20(4):18−24.
    [14]
    董爽, 宋昱珠, 吕莹, 等. 玉米醇溶蛋白/纳米TiO2抗菌复合膜的制备及性质研究[J]. 食品科技,2020,45(6):25−30.
    [15]
    董辉. 亲水性玉米醇溶蛋白的改性研究进展[J]. 胶体与聚合物,2019,37(04):184−187.
    [16]
    Dong F, Padua G W, Wang Y. Controlled formation of hydrophobic surfaces by self-assembly of an amphiphilic natural protein from aqueous solutions[J]. Soft Matter,2013,9(25):5933−5941. doi: 10.1039/c3sm50667c
    [17]
    徐慧, 陈野. 电场下乙醇对玉米醇溶蛋白膜性质的影响[J]. 农业机械学报,2015,46(10):298−303. doi: 10.6041/j.issn.1000-1298.2015.10.040
    [18]
    徐慧, 陈野. 电场处理改善玉米醇溶蛋白膜理化性质[J]. 农业工程学报,2015,31(8):272−276.
    [19]
    Dong Shuang, Peng Guo, Chen Guiyun, et al. Study on the atmospheric cold plasma (ACP) treatment of zein film: Surface properties and cytocompatibility[J]. International Journal of Biological Macromolecules,2020,153:1319−1327. doi: 10.1016/j.ijbiomac.2019.10.268
    [20]
    赵宇. 低温等离子体处理zein膜及接枝PLA性质研究[D]. 天津: 天津科技大学, 2017.
    [21]
    Óscar L. Ramos, Isabel Reinas, Sara I. Silva, et al. Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom[J]. Food Hydrocolloids,2013,30(1):110−122.
    [22]
    Spasojevic L, Katona J, Bucko S, et al. Edible water barrier films prepared from aqueous dispersions of zein nanoparticles[J]. LWT-Food Science and Technology,2019:350−358.
    [23]
    Dong Shuang, Guo Peng, Chen Ye, et al. Surface modification via atmospheric cold plasma (ACP): Improved functional properties and characterization of zein film[J]. Industrial Crops and Products,2018:124−133.
    [24]
    王丽娟. 玉米醇溶蛋白胶体颗粒的制备及应用研究[D]. 广州: 华南理工大学, 2014.
    [25]
    郭兴凤, 崔和平. 玉米醇溶蛋白膜的机械性能与膜厚度的相关性研究[J]. 河南工业大学学报(自然科学版),2015(4):49−52.
    [26]
    孙宏霞, 杨春华, 刘琳琳, 等. 红外加热对大豆蛋白质湿热变性的影响[J]. 食品工业科技,2017,38(5):196−198.
    [27]
    Garland Shaun P, McKee Clayton T, Chang Yow-Ren, et al. A cell culture substrate with biologically relevant size-scale topography and compliance of the basement membrane[J]. Langmuir,2014,30(8):2101−2108. doi: 10.1021/la403590v
    [28]
    Zhang B, Luo Y, Wang Q. Effect of acid and base treatments on structural, rheological, and antioxidant properties of α-zein[J]. Food Chemistry,2011,124(1):210−220. doi: 10.1016/j.foodchem.2010.06.019
    [29]
    刘明. FTIR对丝素蛋白构象的研究[D]. 杭州: 浙江大学, 2006.
    [30]
    Yang H, Yang S, Kong J, et al. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy[J]. Nature Protocols,2015,10(3):382−396. doi: 10.1038/nprot.2015.024
  • Cited by

    Periodical cited type(2)

    1. 阮斯佳,赵欣欣,王燕,柳李旺,屠康,彭菁. 基于响应面和人工神经网络-遗传算法优化鲜切萝卜光动力杀菌工艺. 南京农业大学学报. 2023(06): 1196-1205 .
    2. 贺弘扬. 融合径向基神经网络和遗传算法的翻板钢水闸门优化. 粘接. 2022(12): 133-136 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (231) PDF downloads (31) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return