ZHANG Xiaohui, WEI Mengyao, YANG Yongzhi, et al. Optimization of Purification Process of Polysaccharides from Dendrobium officinale by Response Surface Methodology [J]. Science and Technology of Food Industry, 2021, 42(16): 177−184. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.20201200261.
Citation: ZHANG Xiaohui, WEI Mengyao, YANG Yongzhi, et al. Optimization of Purification Process of Polysaccharides from Dendrobium officinale by Response Surface Methodology [J]. Science and Technology of Food Industry, 2021, 42(16): 177−184. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.20201200261.

Optimization of Purification Process of Polysaccharides from Dendrobium officinale by Response Surface Methodology

More Information
  • Received Date: December 03, 2020
  • Available Online: June 04, 2021
  • Objective: To optimize the purification process of crude polysaccharides from Dendrobium officinale by using response surface methodology. Methods: Through single factor experiments, the effects of (NH4)2SO4 concentration, C2H5OH concentration and extraction temperature on the extraction rate and protein removal rate of polysaccharides were investigated, and then a response surface test was performed. The response values of the extraction rate and protein removal rate of polysaccharides were used for statistical analysis. Results: The degree of influence of various factors on the polysaccharides extraction rate and protein removal rate in descending order was extraction temperature > (NH4)2SO4 concentration > C2H5OH concentration. Based on the total mass of the two-phase aqueous system, the optimal extraction conditions were as follows: 18.80% (NH4)2SO4, 25.00% C2H5OH, extraction temperature was 25 ℃, and the Dendrobium officinale polysaccharide extraction rate and protein removal rate were respectively 94.39% and 91.36%. Conclusion: This method could effectively purify the crude polysaccharides of Dendrobium officinale, and provided a theoretical basis for the development and utilization of Dendrobium officinale polysaccharides.
  • [1]
    孙乐, 陈晓梅, 吴崇明, 等. 铁皮石斛多糖药理活性研究进展[J]. 药学学报,2020,55(10):2322−2329.
    [2]
    黄晓君, 聂少平, 王玉婷, 等. 铁皮石斛多糖提取工艺优化及其成分分析[J]. 食品科学,2013,34(22):21−26. doi: 10.7506/spkx1002-6630-201322005
    [3]
    邹荣灿, 王乾, 孙俊, 等. 国内近10年铁皮石斛多糖研究进展[J]. 食品研究与开发,2018,39(12):209−214. doi: 10.3969/j.issn.1005-6521.2018.12.040
    [4]
    任鞾. 不同地区铁皮石斛主要成分比较分析[D]. 杭州: 浙江农林大学, 2015.
    [5]
    刘文杰. 铁皮石斛的红外光谱定性定量研究[D]. 北京: 北京中医药大学, 2014.
    [6]
    孙恒, 胡强, 金航, 等. 铁皮石斛化学成分及药理活性研究进展[J]. 中国实验方剂学杂志,2017,23(11):225−234.
    [7]
    陈晓梅, 王春兰, 杨峻山, 等. 铁皮石斛化学成分及其分析的研究进展[J]. 中国药学杂志,2013,48(19):1634−1640. doi: 10.11669/cpj.2013.19.008
    [8]
    Gao Z Z, Chen J, Qiu S L, et al. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity[J]. Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides,2016,136:560−569.
    [9]
    国家药典委员会. 中华人民共和国药典: 2020年版一部[S]. 北京: 中国医药科技出版社, 2020: 295.
    [10]
    Juan C, Min-Tao H, Yun-Feng H, et al. Dynamic change in bioactive polysaccharides and antimicrobial activity of Kudingcha (Ilex kudingcha C. J. Tseng.)[J]. Food Science,2014,35(9):43−47.
    [11]
    Kuorwel K K, Cran M J, Sonneveld K, et al. Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents[J]. Journal of Food Science,2011,76(3):90−102.
    [12]
    Yan H, Xie Y, Sun S, et al. Chemical analysis of Astragalus mongholicus polysaccharides and antioxidant activity of the polysaccharides[J]. Carbohydrate Polymers,2010,82(3):636−640. doi: 10.1016/j.carbpol.2010.05.026
    [13]
    Pu X Y, Wang H R, Fan W B, et al. Preparation of Guiqi polysaccharide and antioxidant activity in vitro[C]// International Conference on Materials & Products Manufacturing, 2014.
    [14]
    Zhu X L, Hong Y, Lin L X, et al. Antifatigue and antioxidant activities and monosaccharide composition of polysaccharide from roots of kiwifruit (Actinidia deliciosa)[J]. Food Science,2013,34(13):239−242.
    [15]
    王琳炜, 欧阳臻, 张碧娟, 等. 霍山铁皮石斛多糖的脱蛋白工艺及结构分析[J]. 食品科学,2017,38(12):164−170. doi: 10.7506/spkx1002-6630-201712025
    [16]
    罗秋莲. 铁皮石斛多糖的分离纯化、结构分析和抗氧化活性研究[D]. 南宁: 广西大学, 2016.
    [17]
    罗秋莲, 唐专辉, 张雪凤, 等. 铁皮石斛多糖的分离纯化及其结构研究[J]. 广西大学学报(自然科学版),2016,41(6):2060− 2066.
    [18]
    刘静平, 朱先红, 贾景明. 正交试验优选铁皮石斛类原球茎多糖的提取纯化工艺[J]. 中国药房,2011,22(15):1378−1380.
    [19]
    吕佳妮. 铁皮石斛根中石斛多糖提取优化及抗氧化活性研究[D]. 杭州: 浙江大学, 2014.
    [20]
    张玉, 吕文平, 寇兴然, 等. 大孔树脂对金钗石斛粗多糖脱色的研究[J]. 食品与生物技术学报,2018,37(2):211−216. doi: 10.3969/j.issn.1673-1689.2018.02.016
    [21]
    李国涛, 杨浩, 伏秦超. 铁皮石斛多糖活性炭脱色研究[J]. 农技服务,2017,34(5):31−33. doi: 10.3969/j.issn.1004-8421.2017.05.018
    [22]
    段梦妮. 铁皮石斛多糖及复方剂抗氧化性能研究[D]. 太原: 山西大学, 2018.
    [23]
    张鉥孟, 陈美珍. 乙醇-硫酸铵双水相体系萃取坛紫菜多糖[J]. 食品科学,2014,35(22):46−49. doi: 10.7506/spkx1002-6630-201422009
    [24]
    李化, 柯华香, 李发洁, 等. Box-Behnken响应面法优选五味子多糖双水相提取工艺[J]. 中药材,2016,39(3):593−597.
    [25]
    刘景煜, 李晨, 肖林刚, 等. 双水相萃取法分离纯化金针菇子实体多糖[J]. 食品与发酵工业,2017,43(5):255−260.
    [26]
    Liu Y, Wu Z, Dai J. Phase equilibrium and protein partitioning in aqueous micellar two-phase system composed of surfactant and polymer[J]. Fluid Phase Equilibria,2012,320:60−64. doi: 10.1016/j.fluid.2012.02.002
    [27]
    He A, Dong B, Feng X, et al. Extraction of bioactive ginseng saponins using aqueous two-phase systems of ionic liquids and salts[J]. Separation and Purification Technology,2018,196:270−280. doi: 10.1016/j.seppur.2017.05.041
    [28]
    Silva C A S D, Coimbra J S R, Rojas E E G, et al. Partitioning of glycomacropeptide in aqueous two-phase systems[J]. Process Biochemistry,2009,44(11):1213−1216. doi: 10.1016/j.procbio.2009.06.016
    [29]
    Salabat A, Sadeghi R, Moghadam S T, et al. Partitioning of l-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts[J]. Journal of Chemical Thermodynamics,2011,43(10):1525−1529. doi: 10.1016/j.jct.2011.05.001
    [30]
    吴丁丁, 穆小静, 易小琦, 等. 双水相萃取技术的新发展[J]. 食品工业科技,2017,38(8):395−400.
    [31]
    马春宏, 朱红, 王良, 等. 双水相萃取技术的应用研究进展[J]. 光谱实验室,2010,27(5):1906−1914. doi: 10.3969/j.issn.1004-8138.2010.05.056
    [32]
    范芳. 双水相萃取技术的应用进展[J]. 化学与生物工程,2011,28(7):16−20. doi: 10.3969/j.issn.1672-5425.2011.07.004
    [33]
    于萍. 基于乙醇-硫酸铵双水相体系分离纯化灰树花多糖及其抗氧化活性研究[D]. 镇江: 江苏大学, 2018.
    [34]
    李贵森. 秋葵茎的成分筛查及多糖活性研究[D]. 佳木斯: 佳木斯大学, 2018.
    [35]
    尹国友, 孙婕, 澹博, 等. 双水相萃取韭籽粕多糖的工艺优化及其抗氧化活性研究[J]. 食品科学技术学报,2021,39(2):134−142. doi: 10.12301/j.issn.2095-6002.2021.02.017
    [36]
    吴继宏, 余菁菁, 周林, 等. 双水相体系萃取分离发酵液中的裂褶菌多糖[J]. 食品科技,2019,44(3):188−193.
  • Cited by

    Periodical cited type(10)

    1. 冯思敏,廖伟先,潘杰峰,余佳浩,陈碧莲,邵平. 铁皮石斛多糖的低共熔溶剂提取工艺优化. 食品工业科技. 2024(03): 218-225 . 本站查看
    2. 查兰松,敖茂宏. 不同干燥方法对束花石斛的质量和抗氧化活性的影响. 浙江农业科学. 2024(02): 443-448 .
    3. 黄琼,谢向机. 金线莲多糖提取工艺优化及其体外抗氧化活性研究. 佛山科学技术学院学报(自然科学版). 2023(03): 36-44 .
    4. 邓晓颜,王小兰,李孟,张莉,李玉贤,郑晓珂,冯卫生. 怀菊花总黄酮富集纯化工艺优化及其抗炎活性、成分组成研究. 中成药. 2023(09): 2815-2821 .
    5. 黄明浩,黄泰奇,邓丽娟. 响应面法优化白英粗多糖提取工艺及其体外抗氧化活性的分析. 食品工业科技. 2023(22): 219-225 . 本站查看
    6. 钟惠苹,陈晓晖,孙晓波,蓝峻峰,郭松. 响应曲面法优化紫九牛中大黄素的提取工艺. 山东化工. 2022(06): 82-89+93 .
    7. 孙小斌,李婉君,孙宝忠,谢鹏,刘晓畅,刘素园,白跃宇,张松山. 响应面法优化牛皮胶原蛋白复合膜的制备工艺研究. 食品科技. 2022(04): 143-151 .
    8. 魏来,周强,朱邻遐,钟华美,曹立群. 基于Box-Behnken响应面法的半夏多糖双水相提取工艺优化研究. 湖南中医杂志. 2022(07): 170-175 .
    9. 曾婧,白雪媛,王悦,赵大庆,王思明. 铁皮石斛蛋白提取工艺优化、活性成分筛选及结构研究. 食品工业科技. 2022(19): 228-237 . 本站查看
    10. 让凤菊,刘伟,欧阳艳. 酸浆果实多酚和多糖双水相提取工艺及其抗氧化活性. 食品研究与开发. 2021(24): 114-120 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (197) PDF downloads (37) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return