CHEN Shuyuan, ZHANG Youchao, YANG Jie, et al. Discrimination of Storage Time of White Tea Using Hyperspectral Imaging[J]. Science and Technology of Food Industry, 2021, 42(18): 276−283. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110299.
Citation: CHEN Shuyuan, ZHANG Youchao, YANG Jie, et al. Discrimination of Storage Time of White Tea Using Hyperspectral Imaging[J]. Science and Technology of Food Industry, 2021, 42(18): 276−283. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110299.

Discrimination of Storage Time of White Tea Using Hyperspectral Imaging

More Information
  • Received Date: December 01, 2020
  • Available Online: July 19, 2021
  • The storage time is a main factor determining the value of white tea. To discriminate the storage time rapidly and nondestructively, a new method was applied in this paper. First, hyperspectral image data were captured from Shoumei of 3, 6 and 10 years storage time. Second, four kinds of algorithms were applied to preprocess the original data, savitzky-golay Filter, standard normal variate, minmaxscaler, and multiplicative scatter correction. Third, support vector machine, partial least squares with linear discriminant analysis and logistic regression were built based on the data of the full spectra. Finally, the best combination of preprocessing algorithm and model could be found by comparing the confusion matrix, precision and recall. The results showed that the best classification performances were obtained with the support vector machine after the pretreatment of standard normal variate. The precision of the calibration sets was 90.83%, and that of the prediction sets was 86.02%. Therefore, it is possible to use hyperspectral imaging to discriminate white tea of different storage time in tea industry.
  • [1]
    Liu L, Liu B, Li J, et al. Responses of different cancer cells to white tea aqueous extract: Response to white tea aqueous extract[J]. Journal of Food Science,2018,83(10-12):2593−2601.
    [2]
    Orner G A. Suppression of tumorigenesis in the Apcmin mouse: Down-regulation of β-catenin signaling by a combination of tea plus sulindac[J]. Carcinogenesis,2003,24(2):263−267. doi: 10.1093/carcin/24.2.263
    [3]
    Rasolifard M H, Nozohor Y. The effect of aqueous extract of white tea on the levels of antioxidant enzymes of rats' liver tissue exposed to arsenic[J]. Journal of Ilam University of Medical Sciences,2018,25(5):146−153. doi: 10.29252/sjimu.25.5.146
    [4]
    Sangeeta Rangi, Sunil Kumar Dhatwalia, Priti Bhardwaj, et al. Evidence of similar protective effects afforded by white tea and its active component ‘EGCG’ on oxidative-stress mediated hepatic dysfunction during benzo(a)pyrene induced toxicity[J]. Food and Chemical Toxicology,2018,116:281−291. doi: 10.1016/j.fct.2018.04.044
    [5]
    Camouse Melissa M, Domingo Diana Santo, Swain Freddie R, et al. Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin[J]. 2009, 18(6): 522−526.
    [6]
    刘琳燕, 周子维, 邓慧莉, 等. 不同年份白茶的香气成分[J]. 福建农林大学学报(自然科学版),2015,44(1):27−33. [Liu L Y, Zhou Z W, Deng H L, et al. Analysis of the aromatic components in white tea produced in different years[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2015,44(1):27−33.
    [7]
    Ning J M, Ding D, Song Y S, et al. Chemical constituents analysis of white tea of different qualities and different storage times[J]. European Food Research and Technology,2016,242(6):2093−2104.
    [8]
    Dai W, Xie D, Lu M, et al. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach[J]. Food Research International,2017,96(6):40−45.
    [9]
    Xie D, Dai W, Lu M, et al. Nontargeted metabolomics predicts the storage duration of white teas with 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols as marker compounds[J]. Food Research International,2019,125(11):7209−7218.
    [10]
    刘鹏, 艾施荣, 杨普香, 等. 非线性流形降维方法结合近红外光谱技术快速鉴别不同海拔的茶叶[J]. 茶叶科学,2019,39(6):715−722. [Liu P, Ai S R, Yang P X, et al. Nonlinear manifold dimensionality reduction methods for quick discrimination of tea at different altitude by near infrared spectroscopy[J]. Tea Science,2019,39(6):715−722. doi: 10.3969/j.issn.1000-369X.2019.06.011
    [11]
    Wang Y J, Li T H, Li L Q, et al. Micro-NIR spectrometer for quality assessment of tea: Comparison of local and global models[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,237:118403. doi: 10.1016/j.saa.2020.118403
    [12]
    刘洪林. 基于近红外光谱技术(NIRS)对工夫红茶审评品质客观评价研究[J]. 食品工业科技,2016,37(5):311−315. [Liu H L. Research of evaluation the quality of Congou black tea by near infrared spectroscopy[J]. Science and Technology of Food Industry,2016,37(5):311−315.
    [13]
    李春霖. 基于化学计量学和近红外光谱技术的龙井茶感官及化学品质评价研究[D]. 杭州: 浙江大学, 2019.

    Li C L. Sensory and chemical quality evaluation of Longjing tea using chemoetrics and near-infrared spectroscopy technique[D]. Hangzhou: Zhejiang University, 2019.
    [14]
    于英杰, 王琼琼, 王冰玉, 等. 基于高光谱技术的铁观音茶叶等级判别[J]. 食品科学,2014,35(22):159−163. [Yu Y J, Wang Q Q, Wang B Y, et al. Identification of Tieguanyin tea grades based on hyperspectral technology[J]. Food Science,2014,35(22):159−163. doi: 10.7506/spkx1002-6630-201422030
    [15]
    李晓丽, 魏玉震, 徐劼, 等. 基于高光谱成像的茶叶中EGCG分布可视化[J]. 农业工程学报,2018,34(7):180−186. [Li X L, Wei Y Z, Xu J, et al. EGCG distribution visualization in tea leaves based on hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(7):180−186. doi: 10.11975/j.issn.1002-6819.2018.07.023
    [16]
    李瑶. 基于高光谱成像的茶叶品质判别方法研究[D]. 成都: 四川农业大学, 2018.

    Li Y. A method of distinguishing tea quality based on hyperspectral imaging[D]. Chengdu: Sichuan Agricultural University, 2018.
    [17]
    Ren G, Wang Y, Ning J, et al. Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy,2020,237:118407. doi: 10.1016/j.saa.2020.118407
    [18]
    Hong Z, He Y. Rapid and nondestructive discrimination of geographical origins of Longjing tea using hyperspectral imaging at two spectral ranges coupled with machine learning methods[J]. Applied Science,2020, 10(3):1173−1184.
    [19]
    魏玉震. 基于光谱和光谱成像技术的茶叶含水率检测机理和方法研究[D]. 杭州: 浙江大学, 2019.

    Wei Y Z. Moisture content detection of tea leaves based on spectral and spectral imaging technologies[D]. Hangzhou: Zhejiang University, 2019.
    [20]
    芦兵, 孙俊, 杨宁, 等. 基于荧光透射谱和高光谱图像纹理的茶叶病害预测研究[J]. 光谱学与光谱分析,2019,39(8):2515−2521. [Lu B, Sun J, Yang N, et al. Prediction of tea disease based on fluorescence transmission spectrum and texture of hyperspectral image[J]. Spectroscopy and Spectral Analysis,2019,39(8):2515−2521.
    [21]
    田欣. 高光谱图像的去噪模型与算法[D]. 长沙: 湖南大学, 2019.

    Tian X. Models and algorithms for hyperspectral image restoration[D]. Changsha: Hunan University, 2019.
    [22]
    H Martens, S Å Jensen, P Geladi. Multivariate linearity transformation for near-infrared reflectance spectrometry[C]// Proc Nordic Symp on Applied Statistics(O. H. J. Christie, ed.), Stokkand Forlag Publ, Stavanger, Norway, 1983: 208-234.
    [23]
    郭辉, 彭彦昆, 江发潮, 等. 手持式牛肉大理石花纹检测系统[J]. 农业机械学报,2012,43:207−210. [Guo H, Peng Y K, Jiang F C, et al. Development of conveyable beef-marbling detection system[J]. Transactions of the Chinese Society of Agricultural Machinery,2012,43:207−210. doi: 10.6041/j.issn.1000-1298.2012.03.037
    [24]
    Shaheen H, Agarwal S, Ranjan P. MinMaxScaler binary PSO for feature selection[M]. First International Conference on Sustainable Technologies for Computational Intelligence, 2020: 705-716.
    [25]
    M Dhanoa, S Lister, R Sanderson, et al. The link between multiplicative scatter correction(MSC) and standard normal variate(SNV) transformations of NIR spectra[J]. Journal of Near Infrared Spectroscopy,1995,2(1):43−47.
    [26]
    Saunders C, Stitson M O, Weston J, et al. Support vector machine[J]. Computer Ence,2002,1(4):1−28.
    [27]
    MATLAB中文论坛. MATLAB神经网络30个案例分析[M]. 北京: 北京航空航天大学出版社, 2010.

    Matlab Chinese Forum. Matlab neural network analysis of 30 cases[M]. Beijing: Beihang University Press, 2010.
    [28]
    Brereton R G, Lloyd G R. Partial least squares discriminant analysis: Taking the magic away[J]. Journal of Chemometrics,2014,28:214−225.
    [29]
    Miguel Pérez-Enciso, Tenenhaus M. Prediction of clinical outcome with microarray data: A partial least squares discriminant analysis(PLS-DA) approach[J]. Human Genetics,2003,112(5-6):581−592.
    [30]
    Sabouri S, Hajrasouliha A, Song Y, et al. Logistic regression[M]. Basic Quantitative Research Methods for Urban Planners, 2020: 15-24.
    [31]
    Allison P D. Logistic regression using the SAS system: Theory and application[M]. SAS Publishing, 1999: 81-90.
  • Cited by

    Periodical cited type(4)

    1. 马琳,祁琪,李雅轩,赵昕. 甜蜜素对果蝇繁殖生长及运动能力的影响. 首都师范大学学报(自然科学版). 2024(04): 36-41 .
    2. 严静,薛秋艳,王旸,陈汶意,谢诗晴,江津津,黎攀,杜冰. 发酵米荞对高脂肪秀丽隐杆线虫的降脂及抗氧化作用. 食品工业科技. 2023(06): 8-15 . 本站查看
    3. 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用. 山东大学学报(医学版). 2023(07): 19-26 .
    4. 文明明,毕洁,贺艳萍,戴煌,张威,舒在习,肖安红. 高糖饮食抑制后代雄性果蝇寿命和育性及其作用机制. 现代食品科技. 2022(10): 9-18 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (211) PDF downloads (23) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return