CHEN Yueming, HUANG Jingchu, XU Ting, et al. Rapid Determination of 11 Mycotoxins in Coffee Bean through Multifunctional Purification and Immunoaffinity Column Coupled to High-performance Liquid Chromatography Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(16): 285−293. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110294.
Citation: CHEN Yueming, HUANG Jingchu, XU Ting, et al. Rapid Determination of 11 Mycotoxins in Coffee Bean through Multifunctional Purification and Immunoaffinity Column Coupled to High-performance Liquid Chromatography Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(16): 285−293. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110294.

Rapid Determination of 11 Mycotoxins in Coffee Bean through Multifunctional Purification and Immunoaffinity Column Coupled to High-performance Liquid Chromatography Tandem Mass Spectrometry

More Information
  • Received Date: December 01, 2020
  • Available Online: June 14, 2021
  • A method was established for the simultaneous determination of 11 fungal toxins in coffee beans by ultra-performance liquid chromatography tandem mass spectrometry, the effects of column selection, extracting solvent composition, solid phase extraction column selection and flow phase ratio on the analysis results were examined. Taking coffee beans as the research object, the samples were extracted by acetylene-water-formic acid (85+14+1, V/V) purified by Oasis PRiME HLB, the purification diluted with phosphoric acid buffer, nitrogen blowing after the purified by multi-functional immunoaffinity column, determined by ultra-performance liquid chromatography tandem mass spectrometry after resoluble with 50% acetylene, with 0.1% foric acid-2 mmol/L ammonium acetate solution-acetylene as the flow phase, separated by Waters BEH C18 column, determined by ultra-performance liquid chromatography tandem mass spectrometry quantitated by internal standard method. The results showed that, the linear correlation of 11 mycotoxins were greater than 0.998, the limits of detection were in the range of 0.008~0.544 μg/kg. The average recoveries at the three spiked levels were 80.2%~114% with relative standard deviations of 1.4%~7.9%. This method was simple, fast and efficient, and would be suitable for the co-measurement and analysis of 11 mycotoxins in coffee beans.
  • [1]
    袁航. 粮食中主要真菌毒素危害及联合毒性研究进展[J]. 食品与机械,2019,35(11):223−227.
    [2]
    杨明玉. 浅析食品污染中常见真菌毒素类型与防控措施[J]. 祖国,2019(3):70−71, 80.
    [3]
    吴限鑫, 林秋君, 郭春景, 等. 国内外主要粮油产品中真菌毒素限量、检测标准及风险评估现状分析[J]. 中国粮油学报,2019,34(9):130−138. doi: 10.3969/j.issn.1003-0174.2019.09.022
    [4]
    Vieira T, Cunha S, Casal S. Mycotoxins in coffee[M]. Academic Press: Coffee in Health and Disease Prevention, 2015: 225−233.
    [5]
    国家食品药品监督管理局. GB 2761-2017 食品安全国家标准食品中真菌毒素限量[S]. 北京: 中国标准出版社, 2017.
    [6]
    Levi C. Mycotoxins in coffee[J]. Journal-association of Official Analytical Chemists,1980,63(6):1282−1285.
    [7]
    García-Moraleja A, Font G, Mañes J, et al. Analysis of mycotoxins in coffee and risk assessment in Spanish adolescents and adults[J]. Food and Chemical Toxicology,2015:86.
    [8]
    Culliao, Barcelo. Fungal and mycotoxin contamination of coffee beans in Benguet province, Philippines[J]. Food Additives & Contaminants: Part A,2015,32(2):250−260.
    [9]
    García-Moraleja A, Font G, Mañes J, et al. Development of a new method for the simultaneous determination of 21 mycotoxins in coffee beverages by liquid chromatography tandem mass spectrometry[J]. Food Research International,2015,72:247−255. doi: 10.1016/j.foodres.2015.02.030
    [10]
    García-Moraleja A, Font G, Mañes J, et al. Simultaneous determination of mycotoxin in commercial coffee[J]. Food Control,2015,57:282−292. doi: 10.1016/j.foodcont.2015.04.031
    [11]
    邱文倩, 林坚, 陆秋艳. 福建市售薏苡仁常见真菌毒素污染状况研究[J]. 海峡预防医学杂志,2019,25(6):8−12.
    [12]
    程天笑, 韩小敏, 王硕, 等. 2018年中国4省脱粒小麦中9种真菌毒素污染情况调查[J]. 食品安全质量检测学报,2020,11(12):3992−3999.
    [13]
    陈皆全. 2017~2019年百色市玉米真菌毒素污染状况调查及分析[J]. 食品安全质量检测学报,2020,11(12):4029−4033.
    [14]
    李俊玲, 王书舟, 吴俊威, 等. 河南省粮食及其制品中真菌毒素污染情况调查[J]. 中国食品卫生杂志,2020,32(4):418−421.
    [15]
    曾宪冬, 柳洁, 曾灼祥, 等. 2018~2019年深圳市大米及米粉中真菌毒素污染状况调查[J]. 食品安全导刊,2020(28):60−63.
    [16]
    黄思瑜, 董宪兵, 邓宇杰, 等. 重庆地区辣椒、花椒、八角中真菌毒素污染状况分析[J]. 食品安全质量检测学报,2020,11(21):8119−8124.
    [17]
    章英, 许杨. 谷物类食品中赭曲霉毒素 A 分析方法的研究进展[J]. 食品科学,2006(12):767−771. doi: 10.3321/j.issn:1002-6630.2006.12.202
    [18]
    Bascarán V, De Rojas ah, Chouci Op, et al. Analysis of ochratoxin A in milk after direct immunoaffinity column clean-up by high-performance liquid chromatograp-by with fluorescence detection[J]. Journal of Chromatography A,2007,1167(1):95−101. doi: 10.1016/j.chroma.2007.08.041
    [19]
    张新中, 丁辉, 彭涛, 等. 真菌毒素检测与限量标准的现状与问题分析[J]. 食品安全质量检测学报,2019,10(18):6149−6156.
    [20]
    王战辉, 米铁军, 沈建忠. 荧光偏振免疫分析检测粮食及其制品中的真菌毒素研究进展[J]. 中国农业科学,2012,45(23):4862−4872. doi: 10.3864/j.issn.0578-1752.2012.23.013
    [21]
    Kadota T, Takezawa Y, Hirano S, et al. Rapid detection of nivalenol and deoxynivalenol in wheat using surface plasmon resonance immunoassay[J]. Analytica Chimica Acta,2010,673(2):173−178. doi: 10.1016/j.aca.2010.05.028
    [22]
    Rodríguez-Carrasco Y, Berrada H, Font G, et al. Multi-mycotoxin analysis in wheat semolina using an acetonitrile-based extraction procedure and gas chromatograph-tandem mass spectrometry[J]. Journal of Chromatography A,2012,1270(1):28−40.
    [23]
    夏丹, 高丽荣, 郑明辉. 全二维气相色谱分析持久性有机污染物的应用进展[J]. 色谱,2017(1):91−98.
    [24]
    Slobodchikova I, Vuckovic D. Liquid chromatographyhigh resolution mass spectrometry method for monitoring of 17 mycotoxins in human plasma for exposure studies[J]. Journal of Chromatography A,2018,1548:51−63. doi: 10.1016/j.chroma.2018.03.030
    [25]
    孙梅峰, 豆小文, 张磊, 等. 真菌毒素毒性及其在生物样本中检测技术研究进展[J]. 中国药理学与毒理学杂志,2020,34(10):788−800. doi: 10.3867/j.issn.1000-3002.2020.10.010
    [26]
    胡文尧, 龙美名, 胡玉斐, 等. 食品中真菌毒素样品前处理方法的研究进展[J]. 色谱,2020,38(3):307−316.
    [27]
    贾玮, 樊子便, 杜安, 等. 基于质谱特征碎裂片段的乳制品中真菌毒素非定向筛查方法研究[J]. 分析测试学报,2020,39(6):705−714. doi: 10.3969/j.issn.1004-4957.2020.06.002
    [28]
    施琦, 杨嘉丽, 王雅玲, 等. 液相色谱-串联质谱法测定虾饲料中7种真菌毒素[J]. 分析测试学报,2019,38(3):334−338.
    [29]
    陈兴连, 林涛, 刘兴勇, 等. 分散固相萃取净化-超高效液相色谱-串联质谱法同时测定鱼和虾中抗生素及三苯甲烷类兽药残留[J]. 色谱,2019,37(9):946−954.
  • Cited by

    Periodical cited type(13)

    1. 张莉,李桐,白茹,魏晓明,王梦倩,逄金柱,张智勇. 酵母发酵对挂面食用品质和消化特性的影响. 粮食与饲料工业. 2025(01): 57-61 .
    2. 王丹,李河,周松华,李会珍,侯天宇. 超高压预处理紫苏蛋白与大豆蛋白复配蛋白肉的工艺条件优化. 中国调味品. 2024(01): 18-24 .
    3. 张伟峰,黄泽华,王玉坤,张剑,赵萌萌,崔晚晚,安艳霞,殷贵鸿,周朋辉,赵阳. 复合菌发酵对非油炸方便面品质的影响. 食品科学. 2024(05): 210-216 .
    4. 刘安伟,吕莹果,邱学明,徐卫. 信阳手工挂面产业的现状与发展路径研究. 粮油科学与工程. 2024(02): 49-51 .
    5. 郭佳,刘翀,郑学玲. 醒发工艺对挂面品质及风味的影响. 食品与发酵工业. 2024(11): 247-255 .
    6. 杨园园,郇美丽,李桐,魏晓明,赵希雷,刘琪龙,宋燕燕,黄鑫蕾,张智勇,张毅,赵艺媛,解树珍. 不同厚度发酵挂面品质研究. 食品与发酵科技. 2024(05): 89-94+126 .
    7. 王文琪,王爱红,刘振海,陈恒均,黄玉军. 响应面优化乳酸菌发酵空心挂面制作工艺. 现代食品科技. 2024(09): 144-152 .
    8. 宁恒,马森,李力. 麦麸膳食纤维对发酵挂面品质的影响. 食品工业科技. 2023(18): 115-122 . 本站查看
    9. 徐蓓怡,王婧萱,李新宸,苏柯瑞,渠冰洁,张霞,梁赢,王金水. 酵母种类和发酵方式对冻融前后冷冻熟制空心面品质的影响. 食品研究与开发. 2023(17): 76-81 .
    10. 吴静仪,冯红,吕庆云,王学东,陈曦,蒋修军,万芳. 泡泡青蔬菜粉对面粉、面团性质影响及其挂面加工工艺优化. 食品工业科技. 2023(19): 244-251 . 本站查看
    11. 王纯,宫兆海,代福娟,操宇,刘君也,李志建. 不同种属酵母菌对发酵挂面品质的影响研究. 食品科技. 2023(10): 129-133+140 .
    12. 周慧超,刘翀,郑学玲. 添加不同粒度小麦颗粒粉对面团特性及挂面品质的影响. 食品与发酵工业. 2023(22): 86-93 .
    13. 权苗苗,许飞,陈洁,汪磊,谢亚敏,曹菲. 多菌种酵制多孔挂面的品质及风味物质分析. 河南工业大学学报(自然科学版). 2022(05): 53-60 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (266) PDF downloads (37) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return