LI Fenghua, ZHENG Fengjia, CAO Yanping, et al. Determination of Four Furans in Infant Supplementary Foods by Isotope Dilution-Gas Chromatography/Mass Spectrometry [J]. Science and Technology of Food Industry, 2021, 42(16): 279−284. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110277.
Citation: LI Fenghua, ZHENG Fengjia, CAO Yanping, et al. Determination of Four Furans in Infant Supplementary Foods by Isotope Dilution-Gas Chromatography/Mass Spectrometry [J]. Science and Technology of Food Industry, 2021, 42(16): 279−284. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110277.

Determination of Four Furans in Infant Supplementary Foods by Isotope Dilution-Gas Chromatography/Mass Spectrometry

More Information
  • Received Date: November 29, 2020
  • Available Online: June 14, 2021
  • Objective: A method for the determination of four furan compounds in infant supplementary foods was developed using headspace gas chromatography-mass spectrometry (HS/GC-MS) with the deuterated internal standards. Method: The deuterated internal standards solution was added into the samples, and the headspace was held at 60 ℃ for 30 min. The separation was performed by HP-PLOTQ capillary column gas chromatography, and the internal standard method with selected ion monitoring (SIM) was used for quantitative analysis. Result: When the sample weight was 1 g, the four furans showed good linear relationships within the range of 1~200 μg/kg (r>0.999). The average recoveries under the 3 spiked levels of different matrix samples were 81.6%~110.5%, and the relative standard deviations (RSD, n=6) were 3.44%~14.2%. The total contents of four furans in biscuit, rice flour, cake, fruit puree and meat puree were <0.2~497.3 μg/kg, 1.8~90.1 μg/kg, <0.2~25.5 μg/kg, 3.7~44.2 μg/kg and 54.7~599.2 μg/kg, respectively. Conclusion: The proposed method could be applied to the detection of four furans in infant supplementary foods. Canned infant food contained high concentration of furan and methyl furan. It was necessary to formulate standard production processes and establish limits in order to reduce the exposure of furan and methylfuran in infan.
  • [1]
    谢明勇, 黄军根, 聂少平. 热加工食品中呋喃的研究进展[J]. 食品与生物技术学报,2010,29(1):1−8.
    [2]
    Karlstetter D, Mally A. Biomonitoring of heat-induced food contaminants: Quantitative analysis of furan dependent glutathione- and lysine-adducts in rat urine as putative biomarkers of exposure[J]. Food and Chemical Toxicology,2020,143:111562. doi: 10.1016/j.fct.2020.111562
    [3]
    International Agency for Research on Cancer. WHO-IARC monographs on the evaluation of carcinogenic risks to humans[R]. WHO, 1995, (63): 393−407.
    [4]
    Gruczyńska Eliza, Kowalska Dorota, Kozłowska Mariola, et al. Furan in roasted, ground and brewed coffee[J]. Roczniki Państwowego Zakładu Higieny,2018,69(2):111−118.
    [5]
    Arisseto A P, Vicente E, Furlani R P Z, et al. Occurrence of furan in commercial processed foods in Brazil[J]. Food Additives & Contaminants: Part A,2012,29(12):1832−1839.
    [6]
    EFSA. Report of the CONTAM panel on provisional findings on furan in food[J]. EFSA Journal,2005,2(12):1−43.
    [7]
    Becalski A, Seaman S. Furan precursors in food: A model study and development of a simple headspace method for determination of furan[J]. Journal of AOAC International,2005,88(1):102−106. doi: 10.1093/jaoac/88.1.102
    [8]
    Mayerhofer, Czerwenka, Marchart, et al. Dietary exposure to furan of the Austrian population[J]. Food Additives & Contaminants: Part A,2019,36(11):1637−1646.
    [9]
    Anja Rahn, Chahan Yeretzian. Impact of consumer behavior on furan and furan-derivative exposure during coffee consumption. A comparison between brewing methods and drinking preferences[J]. Food Chemistry,2019,272:514−522. doi: 10.1016/j.foodchem.2018.08.078
    [10]
    Kang Da Eun, Lee Haeng Un, Davaatseren Munkhtugs, et al. Comparison of acrylamide and furan concentrations, antioxidant activities, and volatile profiles in cold or hot brew coffees[J]. Food Science and Biotechnology,2019,29(1):141−148.
    [11]
    RahnAnja, Fankhauser Nina, Yeretzian Chahan. Influence of lipid content and stirring behaviour on furan and furan derivative exposure in filter coffee[J]. Food Chemistry,2019,286:22−28. doi: 10.1016/j.foodchem.2019.01.207
    [12]
    Cha C Y, Lee K G. Effect of roasting conditions on the formation and kinetics of furan in various nuts[J]. Food Chemistry,2020,331:127338. doi: 10.1016/j.foodchem.2020.127338
    [13]
    Perez Locas, Carolina, Yaylayan, et al. Origin and mechanistic pathways of formation of the parent furan-a food toxicant[J]. Journal of Agricultural and Food Chemistry,2004,52(22):6830−6836. doi: 10.1021/jf0490403
    [14]
    Limacher A , Kerler J , Conde-Petit B , et al. Formation of furan and methylfuran from ascorbic acid in model systems and food[J]. Food Additives & Contaminants: Part A,2007,24 Suppl 1:122−135.
    [15]
    US Food and Drug Administration. Exploratory data on Furan in food[EB/OL]. https://www.fda.gov/food/chemical-contaminants-food/exploratory-data-furan-food.
    [16]
    Beate Kettlitz, Gabriele Scholz, Viviane Theurillat, et al. Furan and methylfurans in foods: An update on occurrence, mitigation, and risk assessment[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(3):738−752. doi: 10.1111/1541-4337.12433
    [17]
    Trine Husøy, Augustine Arukwe, Mona-LiseBindrup, et al. Risk assessment of furan exposure in the norwegian population[J]. European Journal of Nutrition & Food Safety,2019,11:44−46.
    [18]
    Lambert Marine, Inthavong Chanthadary, Desbourdes Caroline, et al. Levels of furan in foods from the first French Total Diet Study on infants and toddlers[J]. Food Chemistry,2018,266:381−388. doi: 10.1016/j.foodchem.2018.05.119
    [19]
    柴晓玲, 郝雅茹, 李书国. 电化学分析法快速测定食品中的呋喃[J]. 食品科学,2019,40(16):256−260. doi: 10.7506/spkx1002-6630-20180913-128
    [20]
    孙健, 何碧英, 柳洁, 等. 顶空气相色谱-质谱法测定热加工食品中呋喃的方法研究[J]. 华南预防医学,2009,35(4):48−52.
    [21]
    Nyman P J, Morehouse K M, Mcneal T P, et al. Single-laboratory validation of a method for the determination of furan in foods by using static headspace sampling and gas chromatography mass spectrometry[J]. Journal of AOAC International,2006,89(5):1417−1424. doi: 10.1093/jaoac/89.5.1417
    [22]
    何碧英, 孙健, 柳洁, 等. 顶空气相色谱质谱法检测食品中呋喃的影响因素[J]. 中国热带医学,2010,10(10):1224−1225.
    [23]
    Bononi M, Tateo F. Determination of furan by headspace solid-phase microextraction-gas chromatography-mass spectrometry in balsamic vinegars of Modena (Italy)[J]. Journal of Food Composition and Analysis,2009,22(1):79−82. doi: 10.1016/j.jfca.2008.07.011
    [24]
    何碧英, 康莉, 孙健, 等. 顶空固相微萃取-气质联用法测定热加工食品中的呋喃[J]. 中国卫生检验杂志,2012,22(4):700−703.
    [25]
    Concetta Condurso, Fabrizio Cincotta, Antonella Verzera. Determination of furan and furan derivatives in baby food[J]. Food Chemistry,2018,250:155−161. doi: 10.1016/j.foodchem.2017.12.091
    [26]
    Zahra Batool, Lin Li, Dan Xu, et al. Determination of furan and its derivatives in preserved dried fruits and roasted nuts marketed in China using an optimized HS-SPME GC/MS method[J]. European Food Research and Technology,2020,246(10):2065−2077. doi: 10.1007/s00217-020-03556-2
  • Related Articles

    [1]SUN Renjie, TIAN Maoyu, HE Qin, WU Dezhi, CHEN Weishi. Optimization of Dendrobium officinale Granule Formula Process by Combining Analytic Hierarchy Process and Entropy Weight Method with Orthogonal Experiment[J]. Science and Technology of Food Industry, 2024, 45(8): 227-234. DOI: 10.13386/j.issn1002-0306.2023050347
    [2]ZHANG Xiaoyang, ZHANG Yiwen, ZHU Siyao, WANG Mian, LÜ Yongmei, YU Xiaohong. Screening of Three Chitinase-producing Strains, Optimization of Their Chitinase-producing Conditions and Application in the Hydrolysis of Shrimp Shells[J]. Science and Technology of Food Industry, 2023, 44(5): 98-106. DOI: 10.13386/j.issn1002-0306.2022050078
    [3]SHAN Qianyi, SHEN Yueming, ZHANG Mingxing, TANG Jiacheng, CHEN Yanjie, BAO Jianqiang. Optimization of Ultrasonic-Compound Enzyme Hydrolysis Method for Extracting Chinese Softshell Turtle Oil by Orthogonal Experiment[J]. Science and Technology of Food Industry, 2022, 43(22): 256-264. DOI: 10.13386/j.issn1002-0306.2022030035
    [4]QIAO Shuang-yu, LONG Ming-hua, ZHANG Hui-min, ZHAO Ti-yue, SUN Qiao-jian, HE Gang-jian, LIANG Yong-sheng. Optimization of the Pre-treatment Process for Determination of PAHs in Vegetables by Orthogonal Test[J]. Science and Technology of Food Industry, 2019, 40(23): 104-110,118. DOI: 10.13386/j.issn1002-0306.2019.23.018
    [5]DING Jie, CHEN Jing, SHA Rui, NIU Ben, LIANG Ning, HONG Xia. Optimization of tartaric acid extraction of anthocyanins from soybean hulls by orthogonal experiment[J]. Science and Technology of Food Industry, 2017, (13): 163-166. DOI: 10.13386/j.issn1002-0306.2017.13.030
    [6]DENG Si- jie, HANS Gregrensen. Optimization on the ultrasonic- assisted extraction of total flavonoids from Iberis amara based on orthogonal experimental design[J]. Science and Technology of Food Industry, 2016, (03): 275-278. DOI: 10.13386/j.issn1002-0306.2016.03.049
    [7]LIANG Wen-hui, HUANG Xiang, LIN Li-chun, XIA Nian-yi, ZHANG Xun, PENG Chun-lin, QIU Tian, SHI Xiao-yu, DENG Xiang-yi. Optimization of extracting conditions of flavonoids from Gingko Callus by orthogonal experiment[J]. Science and Technology of Food Industry, 2015, (09): 209-213. DOI: 10.13386/j.issn1002-0306.2015.09.037
    [8]NIU Gai-gai, DENG Jian-chao, LI Lai-hao, YANG Xian-qing, WU Yan-yan, HAO Shu-xian, QI Bo, LIN Wan-ling. Optimization of microwave extraction technology of caulerpin from feathery fern frond by orthogonal experiment design[J]. Science and Technology of Food Industry, 2014, (18): 241-244. DOI: 10.13386/j.issn1002-0306.2014.18.044
    [9]DONG Hong-min, LI Su-qing, NIU Xiao-yong, SHEN Li-wen, LI Lu, QIN Wen. Optimizing ultrasonic extraction of plysaccharides from Chuanminshen violaceum based on orthogonal experiments design[J]. Science and Technology of Food Industry, 2014, (08): 306-309. DOI: 10.13386/j.issn1002-0306.2014.08.061
    [10]Research on quadric orthogonal regression experiment on MAP craft of waxberry[J]. Science and Technology of Food Industry, 2012, (19): 326-328. DOI: 10.13386/j.issn1002-0306.2012.19.066
  • Cited by

    Periodical cited type(12)

    1. 赵忠祥,王家林. 酶解法制备油莎豆粕抗氧化肽工艺优化. 现代农业科技. 2024(17): 154-158 .
    2. 伍津瑶,殷明月,杨美花,康晶晶. 茶树菇降压肽制备工艺优化. 食品与机械. 2024(11): 172-179 .
    3. 段帅,吴晓彤. 油莎豆粕抗氧化肽的制备及其稳定性研究. 中国粮油学报. 2023(01): 80-89 .
    4. 颜阿娜,洪燕婷,王琳,黄茂坤. 鲭鱼酶解工艺双响应面法优化及抗氧化活性研究. 通化师范学院学报. 2023(04): 59-67 .
    5. 张敏君,段雪伟,王燕,杨慧文,刘冰,向文静,由天辉. 构树根皮活性成分乙醇提取工艺优化及其抗氧化活性分析. 食品工业科技. 2023(11): 196-203 . 本站查看
    6. 王燕,段雪伟,张敏君,杨慧文,刘冰,由天辉. 响应面法优化黑玉米粒多糖提取工艺及其抗氧化活性分析. 食品工业科技. 2023(22): 191-200 . 本站查看
    7. 詹炜君,金星鹏,陈俪锟,陈丽. 马鲛鱼黄嘌呤氧化酶抑制肽的制备工艺优化及抗氧化活性研究. 食品安全质量检测学报. 2023(22): 278-287 .
    8. 陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 . 本站查看
    9. 沈晓静,黄璐璐,聂凡秋,王青,杨俊滔,颜成慧,姜薇薇. 云南小粒咖啡花多糖提取工艺优化及其抗氧化活性分析. 食品工业科技. 2022(04): 238-245 . 本站查看
    10. 许依能,纪登杰,杨威,马洁,陈丽. 超声辅助酶法制备南极磷虾抗菌肽的工艺优化. 中国食品添加剂. 2022(05): 73-80 .
    11. 段帅,张德建,姚玉军,吴晓彤. 油莎豆营养价值及加工应用研究进展. 食品科技. 2022(07): 149-154 .
    12. 陈冰冰,杨奕,李嘉颐,金昶言,程缤霈,邓泳琪,林碧敏,梁东,唐德剑,孟莉,苗建银. 富硒辣木籽蛋白降压肽的酶法制备、硒含量及稳定性研究. 食品与机械. 2022(08): 213-221 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (198) PDF downloads (18) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return