JIA Qiansheng, LIU Yuanyang. Preparation of Lactoferrin-Curcumin Nanoparticles and Its Effect on Antifatigue Ability in Rats[J]. Science and Technology of Food Industry, 2021, 42(13): 26−32. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110272.
Citation: JIA Qiansheng, LIU Yuanyang. Preparation of Lactoferrin-Curcumin Nanoparticles and Its Effect on Antifatigue Ability in Rats[J]. Science and Technology of Food Industry, 2021, 42(13): 26−32. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110272.

Preparation of Lactoferrin-Curcumin Nanoparticles and Its Effect on Antifatigue Ability in Rats

More Information
  • Received Date: November 29, 2020
  • Available Online: May 24, 2021
  • In this experiment, nanoparticles were prepared with lactoferrin and curcumin and their structures were analyzed. The absorption characteristics of curcumin nanoparticles and curcumin monomers were compared by in vivo absorption experiments. Then, the anti-fatigue activity of curcumin nanoparticles was evaluated by measuring the duration of exhaustive swimming time, dynamic changes of blood lactic acid, muscle glycogen content, liver glycogen content, blood urea nitrogen content, antioxidant enzyme activity and lipid peroxidation products in Rats. The results showed that the particle size of curcumin nanoparticles was about 593.8 nm. The distribution of curcumin nanoparticles was uniform and the morphology was stable. It has good loading rate of (152.03 ± 2.43) mg/g and encapsulation efficiency rate of 63.57%± 0.74%. Compared with curcumin nanoparticles, the first pass effect of curcumin nanoparticles in vivo was reduced, and it could be maintained at a higher concentration for a longer time in plasma, indicating that lactoferrin carrier played a certain role in sustained-release. In the exercise-induced fatigue animal model, the synthesis of muscle glycogen and liver glycogen were promoted after feeding curcumin nanoparticles, and the duration of exhaustive swimming was significantly increased (P<0.05). The metabolic rate of blood lactic acid was greatly accelerated within 90 minutes after exercise. The index of decreased BUM, MDA and increased GSH-PX also showed an improved anti-fatigue activity by feeding curcumin nanoparticles which was positively correlated with the dose.
  • [1]
    路恒. 高强度间歇训练小周期训练单调性对有氧能力的影响[A]. 中国体育科学学会. 第十一届全国体育科学大会论文摘要汇编[C]. 中国体育科学学会: 中国体育科学学会, 2019: 3.
    [2]
    汤静. 运动员伤病和健康问题的成因及其遏制策略[J]. 运动,2017(8):13−15. doi: 10.3969/j.issn.1674-151x.2017.08.006
    [3]
    云博, 吴景东. 氧化应激与相关疾病及其作用机制[J]. 沈阳医学院学报,2018,20(3):272−276.
    [4]
    Martin, Ott, Vladimir, et al. Mitochondria, oxidative stress and cell death[J]. Apoptosis,2007.
    [5]
    Zhai M, Li B, Duan W, et al. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis[J]. Journal of Pineal Research,2017,63(2).
    [6]
    A M M , A R M H , A A S G , et al. Exploring the use of nanocarrier systems to deliver the magical molecule: Curcumin and its derivatives[J]. Journal of Controlled Release, 2016, 225: 1−30.
    [7]
    Susan H, Douglas K. Curcumin: A review of its' effects on human health[J]. Foods,2017,6(10):92. doi: 10.3390/foods6100092
    [8]
    Kunnumakkara, Ajaikumar B, Bordoloi, et al. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases[J]. British Journal of Pharmacology,2017.
    [9]
    徐春明, 刘亚, 陈莹莹, 等. 姜黄素生理活性、代谢以及生物利用度的研究进展[J]. 中国食品添加剂,2016(9):203−210. doi: 10.3969/j.issn.1006-2513.2016.09.027
    [10]
    李影, 郭标. 姜黄素改善过度训练所致的骨骼肌氧化应激损伤及运动疲劳的研究[J]. 中国临床药理学杂志,2019,35(22):2887−2889.
    [11]
    邵奇, 王倩梅, 马善波, 等. 姜黄素对小鼠急性肺损伤的保护作用[J]. 陕西中医药大学学报,2020,43(4):63−67.
    [12]
    丁立, 林修良, 马丽, 等. 姜黄素及其类似物应用于肝脏疾病的研究进展[J]. 广东化工,2019,46(19):244−245, 247.
    [13]
    程耀明. 姜黄提取物对运动小鼠生理疲劳和生理机能的影响[J]. 基因组学与应用生物学,2019,38(12):5738−5743.
    [14]
    任爽, 董文霞, 刘锦芳, 等. 食品运载体系包埋姜黄素的研究进展[J/OL]. 食品科学: 1−17[2020-09-01]. http://kns.cnki.net/kcms/detail/11.2206.TS.20200722.1308.056.html.
    [15]
    邓楚君, 许琳霜, 李波, 等. 乳铁蛋白与姜黄素纳米复合物和亚微米复合物的结构表征及结合机理研究[J/OL]. 食品工业科技: 1−20[2020-09-01]. http://kns.cnki.net/kcms/detail/11.1759.TS.20190416.1034.007.html.
    [16]
    Sivasami P, Hemalatha T. Augmentation of therapeutic potential of curcumin using nanotechnology: Current perspectives[J]. Artificial Cells,2018:1−12.
    [17]
    冯涛, 曾小兰, 王珂, 等. 短链葡聚糖-姜黄素纳米乳液的制备及结构表征[J]. 农业工程学报,2019,35(1):311−317.
    [18]
    任金妹, 李曼, 谢宁, 等. 提高姜黄素口服生物利用度方法的研究进展[J]. 中国药房,2018,29(23):3303−3308. doi: 10.6039/j.issn.1001-0408.2018.23.29
    [19]
    Holder, Plummer, Ryan. The metabolism and excretion of curcumin (1, 7-Bis-(4-hydroxy-3- methoxyphenyl)- 1, 6-heptadiene-3, 5-dione) in the rat[J]. Xenobiotica,1978,8(12):761−768. doi: 10.3109/00498257809069589
    [20]
    王玮琛. 姜黄素分离与纳米颗粒制备及对疲劳应激损伤的修复作用[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [21]
    江萍. 基于Caco-2细胞模型的乳清蛋白纳米载体提高姜黄素吸收率的研究[D]. 北京: 北京化工大学, 2018.
    [22]
    张聪聪, 金若敏. HPLC法测定大鼠血浆中姜黄素的含量及其药动学研究[J]. 中国新药杂志,2014,23(15):1829−1832.
    [23]
    胡戈, 曹卉, 周海涛, 等. 姜黄素对过度训练大鼠肾脏细胞凋亡的调控作用及其机制[J]. 中国应用生理学杂志,2018,34(6):513−518, 583−584.
    [24]
    Chen, Li, Tang. Nanocomplexation of soy protein isolate with curcumin: Influence of ultrasonic treatment[J]. Food Research International,2015,75(sep.):157−165.
    [25]
    毛华. 基于肠淋巴吸收的姜黄素自乳化给药系统的研究[D]. 成都: 成都医学院, 2015.
    [26]
    Wu J, Wang J, Zhang J, et al. Oral delivery of curcumin using silk nano-and microparticles[J]. ACS Biomaterials Science & Engineering,2018,4(11):3885−3894.
    [27]
    郭庆军, 常耀明, 李金声, 等. 大鼠游泳运动疲劳模型力竭标准的研究[J]. 现代生物医学进展,2010,10(15):2855−2858.
    [28]
    Prasad, Tyagi, Aggarwal. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice[J]. Cancer Research & Treatment Official Journal of Korean Cancer Association,2014,46(1):2−18.
    [29]
    Crivelli, Bari, Perteghella, et al. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavengingand anti-inflammatory activities in an in vitro model of osteoarthritis[J]. European Journal of Pharmaceutics and Biopharmaceutics,2019,137:37−45. doi: 10.1016/j.ejpb.2019.02.008
    [30]
    Wang J, Li S, Fan Y, et al. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. Journal of Ethnopharmacology,2010,130(2):421−423. doi: 10.1016/j.jep.2010.05.027
    [31]
    Chi A, Li H, Kang C, et al. Anti-fatigue activity of a novel polysaccharide conjugates from Ziyang green tea[J]. International Journal of Biological Macromolecules,2015,80:566−572. doi: 10.1016/j.ijbiomac.2015.06.055
    [32]
    Li J, Sun Q, Meng Q, et al. Anti-fatigue activity of polysaccharide fractions from Lepidium meyenii Walp. (maca)[J]. International Journal of Biological Macromolecules,2017,95:1305−1311. doi: 10.1016/j.ijbiomac.2016.11.031
    [33]
    武胜奇. 自由基, 抗氧化剂与运动能力的关系[J]. 南京体育学院学报(自然科学版),2012,11(3):40−42.

Catalog

    Article Metrics

    Article views (281) PDF downloads (37) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return